Free Newsletter
Register for our Free Newsletters
Newsletter
Zones
Advanced Composites
LeftNav
Aerospace
LeftNav
Amorphous Metal Structures
LeftNav
Analysis and Simulation
LeftNav
Asbestos and Substitutes
LeftNav
Associations, Research Organisations and Universities
LeftNav
Automation Equipment
LeftNav
Automotive
LeftNav
Biomaterials
LeftNav
Building Materials
LeftNav
Bulk Handling and Storage
LeftNav
CFCs and Substitutes
LeftNav
Company
LeftNav
Components
LeftNav
Consultancy
LeftNav
View All
Other Carouselweb publications
Carousel Web
Defense File
New Materials
Pro Health Zone
Pro Manufacturing Zone
Pro Security Zone
Web Lec
Pro Engineering Zone
 
 
 
News

Biomaterial to be girders for nanoscale construction projects

National Science Foundation : 11 August, 2004  (Company News)
Researchers have coaxed RNA to self-assemble into 3-D arrays, a potential backbone for nanotech scaffolds. These RNA structures can form a wider variety of shapes than double-stranded DNA can and are easier to manipulate than many protein alternatives. Peixuan Guo of Purdue University and his colleagues report the findings in the August 11, 2004, issue of the journal Nano Letters. RNA (ribonucleic acid) molecules are best known for implementing the genetic information encoded in deoxyribonucleic acid. However, instead of using the long molecular strings to carry information, the researchers have achieved new control over RNA and created novel arrays.
Researchers have coaxed RNA to self-assemble into 3-D arrays, a potential backbone for nanotech scaffolds. These RNA structures can form a wider variety of shapes than double-stranded DNA can and are easier to manipulate than many protein alternatives.

Peixuan Guo of Purdue University and his colleagues report the findings in the August 11, 2004, issue of the journal Nano Letters.

RNA (ribonucleic acid) molecules are best known for implementing the genetic information encoded in deoxyribonucleic acid. However, instead of using the long molecular strings to carry information, the researchers have achieved new control over RNA and created novel arrays.

By mixing the custom-made RNA strands with other substances, such as magnesium chloride, the researchers were able to get the strands to join into 3-D shapes.

In 1987, Guo discovered that a bacteria-infecting virus possesses a biomolecular nanomotor that requires RNA molecules to function. While determining how RNA works in that motor, he learned to manipulate and control RNA assembly.

Now, Guo and his colleagues have applied that knowledge to building artificial RNA nanostructures, including 'large' 3-D arrays formed from identical RNA building blocks. Because these arrays extend to several micrometers, far larger than individual RNA strands, they may potentially link nanofabrication with current microfabrication processes.

The researchers hope that the arrays, while still in the earliest stages of development, will one day serve as the scaffolding on which diagnostic chips, tiny sensors, gene delivery vehicles and other nanoscale devices will be mounted or constructed.
Bookmark and Share
 
Home I Editor's Blog I News by Zone I News by Date I News by Category I Special Reports I Directory I Events I Advertise I Submit Your News I About Us I Guides
 
   © 2012 NewMaterials.com
Netgains Logo