Free Newsletter
Register for our Free Newsletters
Newsletter
Zones
Advanced Composites
LeftNav
Aerospace
LeftNav
Amorphous Metal Structures
LeftNav
Analysis and Simulation
LeftNav
Asbestos and Substitutes
LeftNav
Associations, Research Organisations and Universities
LeftNav
Automation Equipment
LeftNav
Automotive
LeftNav
Biomaterials
LeftNav
Building Materials
LeftNav
Bulk Handling and Storage
LeftNav
CFCs and Substitutes
LeftNav
Company
LeftNav
Components
LeftNav
Consultancy
LeftNav
View All
Other Carouselweb publications
Carousel Web
Defense File
New Materials
Pro Health Zone
Pro Manufacturing Zone
Pro Security Zone
Web Lec
Pro Engineering Zone
 
 
 
News

Dropping nano-anchor

DOE/Pacific Northwest National Laboratory : 27 August, 2006  (Technical Article)
Touch the tines of a tuning fork and it goes silent. Scientists have faced a similar problem trying to harness the strength and conductivity of carbon nanotubes, regarded as material of choice for the next generation of everything from biosensors to pollution-trapping sponges.
Touch the tines of a tuning fork and it goes silent. Scientists have faced a similar problem trying to harness the strength and conductivity of carbon nanotubes, regarded as material of choice for the next generation of everything from biosensors to pollution-trapping sponges.

Leonard Fifield, a staff scientist at the Department of Energy's Pacific Northwest National Laboratory in Richland, Wash., and colleagues at PNNL and the University of Washington say they can now control the deposition of anchors on a carbon nanotube, 10,000 times smaller than a human hair, without muting the nanotube's promising physical properties.

Fifield reported the group's findings today at the American Chemical Society national meeting.

In the decade since the synthesis of the first carbon nanotubes, researchers have attached molecules, intended to be the 'feelers' for picking up chemical sensations and passing the information to the nanotube, using techniques that call for strong acidity and other harsh conditions that compromise the material's utility. 'Usually, people use an organic solution of anchors and incubate the nanotubes in the solution to deposit the anchors,' Fifield said. 'This method allows little control over the level of anchor loading. Our innovation is the use of supercritical fluids, carbon dioxide, with both liquid and gas properties, for anchor deposition.'

Their technique allows them 'to deposit anchors on a wide variety of nanotube sample types, including those not easily incubated in solution,' Fifield said. 'It also enables us to control how much of a nanotube surface is coated with molecules and the thickness of the coating.'
Bookmark and Share
 
Home I Editor's Blog I News by Zone I News by Date I News by Category I Special Reports I Directory I Events I Advertise I Submit Your News I About Us I Guides
 
   © 2012 NewMaterials.com
Netgains Logo