Free Newsletter
Register for our Free Newsletters
Newsletter
Zones
Advanced Composites
LeftNav
Aerospace
LeftNav
Amorphous Metal Structures
LeftNav
Analysis and Simulation
LeftNav
Asbestos and Substitutes
LeftNav
Associations, Research Organisations and Universities
LeftNav
Automation Equipment
LeftNav
Automotive
LeftNav
Biomaterials
LeftNav
Building Materials
LeftNav
Bulk Handling and Storage
LeftNav
CFCs and Substitutes
LeftNav
Company
LeftNav
Components
LeftNav
Consultancy
LeftNav
View All
Other Carouselweb publications
Carousel Web
Defense File
New Materials
Pro Health Zone
Pro Manufacturing Zone
Pro Security Zone
Web Lec
Pro Engineering Zone
 
 
 
News

Freezing magnets with magnets

DOE/Brookhaven National Laboratory : 23 April, 2007  (Technical Article)
A
Jason Gardner, a scientist at the U.S. Department of Energy’s Brookhaven National Laboratory and the National Institute of Standards and Technology, has been able to freeze a spin liquid by applying a magnetic field. This liquid-to-solid transition (like water to ice) allowed Gardner and his colleagues to reveal an unusual property of a spin liquid system, a property that may hold the key to understanding this unusual magnetic state and how it could be used to better understand superconductivity.

“Regular liquids are expected to crystallize at low temperatures,” Gardner said. “A spin liquid should too, but the system I’m studying remains a liquid down to temperatures close to absolute zero, the coldest temperature possible.”

Spin liquids are found in several magnetic materials, including high-temperature superconducting materials, however Gardner studies this exotic magnetic state in materials that exhibit geometrical frustration. This occurs when the geometry of the material’s atomic lattice and the magnetic interactions within the material are incompatible. In his most recent study, he examined an insulating material consisting of the elements terbium (Tb), titanium (Ti), and oxygen (O). Abbreviated Tb2Ti2O7, this material remains in a spin liquid state at extreme low temperatures, but begins to crystallize under extremely high pressure (100,000 times atmospheric pressure) and now, as Gardner and his group have discovered, under magnetic fields.

“Tb2Ti2O7 is a bit of a mystery in frustrated magnetism,” Gardner said. “It remains very dynamic down to 17 milli-Kelvin (absolute zero is 0 Kelvin), but theory states that it should freeze at temperatures 1000 times higher. Fully understanding this magnet will bring new insight into other dynamic systems, not only spin liquids.”

The second part of Gardner’s talk will center on the “neutron spin echo technique,” a new area of research in frustrated magnetism. This technique uses neutrons to measure the slow motions of atoms, molecules, and magnetic spins on very short timescales, as small as nanoseconds (billionths of a second) and even picoseconds (trillionths of a second). It works by measuring the very subtle change in speed of a neutron as it interacts with matter. It has been applied to problems in biology, chemistry and physics including how oil and water interact and how polymer chains vibrate.

“The neutron spin echo facility at the Center for Neutron Research at NIST is unique in the Americas,” Gardner said. “In collaboration with Georg Ehlers at the Spallation Neutron Source at Oak Ridge National Laboratory, we have been doing some great work on the slow dynamics in frustrated magnets.” Gardner and his colleagues hope that their studies will encourage others to use this facility.

The research was funded by the Office of Basic Energy Sciences within the U.S. Department of Energy's Office of Science.
Bookmark and Share
 
Home I Editor's Blog I News by Zone I News by Date I News by Category I Special Reports I Directory I Events I Advertise I Submit Your News I About Us I Guides
 
   Â© 2012 NewMaterials.com
Netgains Logo