Free Newsletter
Register for our Free Newsletters
Newsletter
Zones
Advanced Composites
LeftNav
Aerospace
LeftNav
Amorphous Metal Structures
LeftNav
Analysis and Simulation
LeftNav
Asbestos and Substitutes
LeftNav
Associations, Research Organisations and Universities
LeftNav
Automation Equipment
LeftNav
Automotive
LeftNav
Biomaterials
LeftNav
Building Materials
LeftNav
Bulk Handling and Storage
LeftNav
CFCs and Substitutes
LeftNav
Company
LeftNav
Components
LeftNav
Consultancy
LeftNav
View All
Other Carouselweb publications
Carousel Web
Defense File
New Materials
Pro Health Zone
Pro Manufacturing Zone
Pro Security Zone
Web Lec
Pro Engineering Zone
 
 
 
News

Nitrogen-doped carbon nanotubes as effective in fuel cell catalysis as platinum, ruthenium and other noble metals

Umeå University : 05 November, 2012  (Special Report)
Fuel cells based on hydrogen and oxygen can convert stored chemical energy into electrical energy in an environmentally friendly way, as the by-product is simply water. As a replacement for scarece and expensive noble metals, organic materials, are now under the spotlight. Physicists at Umeå University in Sweden have deliberately introduced defects into carbon nanotubes to create the necessary properties.
Nitrogen-doped carbon nanotubes as effective in fuel cell catalysis as platinum, ruthenium and other noble metals

The world’s needs for energy and raw materials are constantly growing, and the search for readily accessible and inexpensive material for energy applications is driving research teams all around the world. Fuel cells based on hydrogen and oxygen, for example, can convert stored chemical energy into electrical energy in an environmentally friendly way, as the by-product is simply water. For this conversion to occur efficiently, the electrodes in the fuel cells contain various forms of catalysts.

A major problem with these catalysts is that they are currently being made of alloys of platinum, ruthenium, and other noble metals. These noble metals are not only extremely expensive but also rare and difficult to extract. The pressure to find other more readily available catalysts is therefore very strong, and hence a report in Science about three years ago that an all-organic catalyst based on nitrogen-doped carbon nanotubes could catalyse the splitting of oxygen just as effectively as platinum, evidently drew a great deal of attention.

Since then, research in this field has been intensive, but yet many questions remain regarding the mechanism and efficiency of catalytic processes that occur at the defects where nitrogen atoms have replaced carbon atoms in the carbon nanotubes. A normal “ideal” carbon nanotube consists entirely of carbon atoms, but in practice most materials have defects. For example, it may be that an atom is missing at a site where it normally should be found, or that a carbon atom has been replaced by a foreign atom.

“In our case we deliberately created defects in the carbon nanotubes by replacing some of the carbon atoms with nitrogen atoms. We did this to create local centers around these defects that have an increased electron density. The increase in electron density leads to the desired catalytic properties,” says Thomas Wågberg, associate professor at the Department of Physics.

The study shows that the catalytic effect is much larger around certain types of nitrogen defects than around other types. “We also show that it’s possible to use simple heat treatment to convert inefficient nitrogen defects into highly efficient defects,” says Thomas Wågberg, whose research team at the Department of Physics is behind the study..

Similar materials that the research group is studying also show great potential to catalyse other processes, such as the reverse process of splitting water into oxygen and hydrogen, which is referred to as artificial photosynthesis.

Bookmark and Share
 
Home I Editor's Blog I News by Zone I News by Date I News by Category I Special Reports I Directory I Events I Advertise I Submit Your News I About Us I Guides
 
   ¬© 2012 NewMaterials.com
Netgains Logo