Free Newsletter
Register for our Free Newsletters
Newsletter
Zones
Advanced Composites
LeftNav
Aerospace
LeftNav
Amorphous Metal Structures
LeftNav
Analysis and Simulation
LeftNav
Asbestos and Substitutes
LeftNav
Associations, Research Organisations and Universities
LeftNav
Automation Equipment
LeftNav
Automotive
LeftNav
Biomaterials
LeftNav
Building Materials
LeftNav
Bulk Handling and Storage
LeftNav
CFCs and Substitutes
LeftNav
Company
LeftNav
Components
LeftNav
Consultancy
LeftNav
View All
Other Carouselweb publications
Carousel Web
Defense File
New Materials
Pro Health Zone
Pro Manufacturing Zone
Pro Security Zone
Web Lec
Pro Engineering Zone
 
 
 
News

Novel mechanism of protein processing found

DTI Globalwatch : 12 October, 2006  (Technical Article)
Understanding medical research problems often relies on the direct, linear relationship between the sequence of a protein and the DNA encoding that protein. In fact, colinearity of DNA and protein sequences is thought to be a fundamental feature of the universal genetic code.
However, a paper published in Science by a team from the Brussels Branch of the global Ludwig Institute for Cancer Research and the Seattle-based Fred Hutchinson Cancer Research Center, shows that a protein can be rearranged so that it is no longer colinear with its encoding DNA.

Genes have stretches of (protein) coding DNA sequences interspersed with stretches of non-coding DNA sequences. The first step in making the protein is the faithful transcription of the entire gene's sequence into an RNA sequence. The RNA is then 'spliced' such that the non-coding sequences are removed and the coding sequences are assembled in a linear fashion to form the template for translation from RNA to protein.

'Until now it was thought that colinearity of DNA and protein sequences was only interrupted by RNA splicing,' says LICR's Dr. Benoit Van den Eynde, the study's senior author. 'This new study shows that protein splicing also occurs, and may even result in protein fragments, or peptides, being spliced together in the order opposite to that which occurs in the parental protein.'

According to Dr. Van den Eynde, this novel phenomenon occurs during the physiological function of 'antigen processing,' which produces antigenic peptides; the 'red flags' that mark cells for destruction by the immune system.

The immune system attacks 'foreign' cells, be they tumor cells, virally infected, or donated by another person, when T lymphocytes recognize antigenic peptides displayed on the cell surface. The antigens are created by 'proteasomes,' components of the cell machinery that cut foreign proteins into peptides that are then displayed on the cell surface for recognition and destruction by CD8+ T lymphocytes. However, the Belgium/USA team has found that proteasomes can also splice the peptide fragments together in a reverse order to that encoded by the protein's DNA sequence template. This takes the possible number of antigens from any one protein into potentially thousands of sequence configurations.

The sequence of the first human cancer-specific antigen, which was identified at the LICR Brussels Branch, has allowed the development of antigen-specific cancer vaccines that are in clinical trials around the world. This study describes a mechanism that significantly extends the number of antigenic peptides that can be produced from a single protein, and therefore widens the applicability of peptide vaccines against cancer and infectious diseases.
Bookmark and Share
 
Home I Editor's Blog I News by Zone I News by Date I News by Category I Special Reports I Directory I Events I Advertise I Submit Your News I About Us I Guides
 
   © 2012 NewMaterials.com
Netgains Logo