Free Newsletter
Register for our Free Newsletters
Newsletter
Zones
Advanced Composites
LeftNav
Aerospace
LeftNav
Amorphous Metal Structures
LeftNav
Analysis and Simulation
LeftNav
Asbestos and Substitutes
LeftNav
Associations, Research Organisations and Universities
LeftNav
Automation Equipment
LeftNav
Automotive
LeftNav
Biomaterials
LeftNav
Building Materials
LeftNav
Bulk Handling and Storage
LeftNav
CFCs and Substitutes
LeftNav
Company
LeftNav
Components
LeftNav
Consultancy
LeftNav
View All
Other Carouselweb publications
Carousel Web
Defense File
New Materials
Pro Health Zone
Pro Manufacturing Zone
Pro Security Zone
Web Lec
Pro Engineering Zone
 
 
 
News

One gene found to command many others to build a wing

University Of Wisconsin-Madison : 17 April, 2001  (Technical Article)
That scenario, where a single gene orchestrates the construction of a fruit fly wing by commanding a network of many other genes, is described in the Friday, April 13 edition of the journal Science by a team of researchers at the Howard Hughes Medical Institute, University of Wisconsin-Madison.
That scenario, where a single gene orchestrates the construction of a fruit fly wing by commanding a network of many other genes, is described in the Friday, April 13 edition of the journal Science by a team of researchers at the Howard Hughes Medical Institute, University of Wisconsin-Madison.

The finding is important because it helps define the organizational flow chart for genes whose job it is to build structures. These genes, known generally as selector genes, are critical to the building of wings, legs, eyes, antennae and more. And the implications of the discovery very likely extend far beyond fruit flies to other animals, including humans, says Sean Carroll, a study author and developmental biologist.

'Of all the genes in the genetic tool kit, very few shoulder the responsibility of commanding the development of an entire structure,' Carroll says. 'Genes that are involved in making structures need to know how they're going to act. Here's a gene that does that and it gives us our first concrete look at how this process works.'

The gene, known to molecular biologists as 'scalloped,' is responsible for making a protein that seeks out and turns on all the genes that do the heavy lifting of producing and organizing cells to form a wing. The protein produced by scalloped binds to certain segments of the fruit fly genome and activates and regulates target genes within those segments, Carroll says.

In fruit flies, the genome is composed of about 13,000 genes. Of those, perhaps less than a dozen behave like scalloped, making these boss genes critical nodes in the process of animal development, Carroll says.

Lead authors are Kirsten A. Guss and Craig. E. Nelson. Co-authors include Angela Hudson, Mary Ellen Kraus and Carroll, professor of genetics and molecular biology at UW-Madison.
Bookmark and Share
 
Home I Editor's Blog I News by Zone I News by Date I News by Category I Special Reports I Directory I Events I Advertise I Submit Your News I About Us I Guides
 
   © 2012 NewMaterials.com
Netgains Logo