Free Newsletter
Register for our Free Newsletters
Newsletter
Zones
Advanced Composites
LeftNav
Aerospace
LeftNav
Amorphous Metal Structures
LeftNav
Analysis and Simulation
LeftNav
Asbestos and Substitutes
LeftNav
Associations, Research Organisations and Universities
LeftNav
Automation Equipment
LeftNav
Automotive
LeftNav
Biomaterials
LeftNav
Building Materials
LeftNav
Bulk Handling and Storage
LeftNav
CFCs and Substitutes
LeftNav
Company
LeftNav
Components
LeftNav
Consultancy
LeftNav
View All
Other Carouselweb publications
Carousel Web
Defense File
New Materials
Pro Health Zone
Pro Manufacturing Zone
Pro Security Zone
Web Lec
Pro Engineering Zone
 
 
 
News

PNNL develops mercury-absorbing pollution solution

DOE/Pacific Northwest National Laboratory : 16 August, 2006  (Technical Article)
Scientists at the Department of Energy's Pacific Northwest National Laboratory have developed a novel material that can remove mercury and other toxic substances from coalburning power-plant waste water.
Mercury pollution is widely recognized as a growing risk to both the environment and public health. It is estimated that coal-burning power plants contribute about 48 tons of mercury to the United States environment each year. The Centers for Disease Control and Prevention estimate that one in eight women have mercury concentrations in their bodies that exceed safety limits.

The Environmental Protection Agency is currently reconsidering proposed rules on the release of mercury from coal-burning power plant effluents and may impose greater restrictions. Mercury found in liquid effluents comes from water-based processes the facilities use to scrub, capture and collect the toxic material.

PNNL's synthetic material features a nanoporous ceramic substrate with a specifically tailored pore size and a very high surface area. The surface area of one teaspoon of this substance is equivalent to that of a football field. 'This substance has proven to be an effective and voracious tool for absorbing mercury,' said Shas Mattigod, lead chemist and PNNL project manager. Pore sizes can be tailored for specific tasks. His findings were presented today at the American Chemical Society national meeting in Anaheim, Calif.

The material relies on technology previously developed at PNNL, self-assembled monolayers on mesoporous support, or SAMMS. SAMMS integrates a nanoporous silica-based substrate with an innovative method for attaching monolayers, or single layers of densely packed molecules, that can be designed to attract mercury or other toxic substances.

In recent tests at PNNL, a customized version of SAMMS with an affinity for mercury, referred to as thiol-SAMMS, was developed. According to Mattigod, test results revealed mercury-absorbing capabilities that surpassed the developers' expectations. After three successive treatments, 99.9 percent of the mercury in the simulated waste water was captured reducing levels from 145.8 parts per million to 0.04 parts per million. This is below the EPA's discharge limit of 0.2 parts per million.

The mercury-laden SAMMS also passed Washington Stateís Dangerous Waste regulatory limit of 0.2 parts per million allowing for safe disposal of the test solution directly to the sewer. Tests have shown that the mercury-laden SAMMS also passed EPA requirements for land disposal. 'We expect this technology will result in huge savings to users who are faced with costly disposal of mercury in the waste stream.'

Mattigod adds that SAMMS technology can be easily adapted to target other toxins such as lead, chromium and radionuclides.
Bookmark and Share
 
Home I Editor's Blog I News by Zone I News by Date I News by Category I Special Reports I Directory I Events I Advertise I Submit Your News I About Us I Guides
 
   ¬© 2012 NewMaterials.com
Netgains Logo