Free Newsletter
Register for our Free Newsletters
Newsletter
Zones
Advanced Composites
LeftNav
Aerospace
LeftNav
Amorphous Metal Structures
LeftNav
Analysis and Simulation
LeftNav
Asbestos and Substitutes
LeftNav
Associations, Research Organisations and Universities
LeftNav
Automation Equipment
LeftNav
Automotive
LeftNav
Biomaterials
LeftNav
Building Materials
LeftNav
Bulk Handling and Storage
LeftNav
CFCs and Substitutes
LeftNav
Company
LeftNav
Components
LeftNav
Consultancy
LeftNav
View All
Other Carouselweb publications
Carousel Web
Defense File
New Materials
Pro Health Zone
Pro Manufacturing Zone
Pro Security Zone
Web Lec
Pro Engineering Zone
 
 
 
News

Protein folding on a chip

DOE/Brookhaven National Laboratory : 12 May, 2007  (Technical Article)
Scientists at the U.S. Department of Energy
Unlike typical parallel processors, the 10,000 processors in this supercomputer (called Quantum Chromodynamics on a Chip, or QCDOC, for its original application in physics) each contain their own memory and the equivalent of a 24-lane superhighway for communicating with one another in six dimensions. This configuration allows the supercomputer to break the task of deciphering the three-dimensional arrangement of a proteinís atoms, 100,000 in a typical protein, into smaller chunks of 10 atoms per processor. Working together, the chips effectively cut the computing time needed to solve a proteinís structure by a factor of 1000, says James Davenport, a physicist at Brookhaven. This would reduce the time for a simulation from approximately 20 years to 1 week.

ďThe computer analyzes the forces of attraction and repulsion between atoms, depending on their positions, distances, and angles. It shuffles through all the possible arrangements to arrive at the most stable three-dimensional configuration,Ē Davenport says.

The technique is complementary to other methods of protein-structure determination, such as x-ray crystallography, where the pattern of x-rays scattering off atoms in crystallized proteins is used to determine structure. It will be particularly useful for proteins that are impossible or difficult to crystallize, such as those that control the movement of molecules across the cellular membrane. The high-speed analysis will also allow scientists to study how proteins change as they interact or undergo other biochemical processes, which will give them more information about the proteinsí functions than available from structural studies alone.

Davenport and colleagues at Stony Brook University will test their application on a QCDOC machine that has been developed for physics applications at Brookhaven by Columbia University, IBM, and the RIKEN/BNL Research Center.
Bookmark and Share
 
Home I Editor's Blog I News by Zone I News by Date I News by Category I Special Reports I Directory I Events I Advertise I Submit Your News I About Us I Guides
 
   ¬© 2012 NewMaterials.com
Netgains Logo