Free Newsletter
Register for our Free Newsletters
Newsletter
Zones
Advanced Composites
LeftNav
Aerospace
LeftNav
Amorphous Metal Structures
LeftNav
Analysis and Simulation
LeftNav
Asbestos and Substitutes
LeftNav
Associations, Research Organisations and Universities
LeftNav
Automation Equipment
LeftNav
Automotive
LeftNav
Biomaterials
LeftNav
Building Materials
LeftNav
Bulk Handling and Storage
LeftNav
CFCs and Substitutes
LeftNav
Company
LeftNav
Components
LeftNav
Consultancy
LeftNav
View All
Other Carouselweb publications
Carousel Web
Defense File
New Materials
Pro Health Zone
Pro Manufacturing Zone
Pro Security Zone
Web Lec
Pro Engineering Zone
 
 
 
News

Scientist refines cosmic clock to determine age of Milky Way

University Of Chicago : 25 May, 2007  (Technical Article)
The University of Chicago's Nicolas Dauphas has estimated the age of the Milky Way at approximately 14.5 billion years by combining telescopic observations with laboratory analysis of meteorites, such as the Murchison meteorite from Australia, pictured here.
Image courtesy of Nicolas Dauphas, University of Chicago

The University of Chicago’s Nicolas Dauphas has developed a new way to calculate the age of the Milky Way that is free of the unvalidated assumptions that have plagued previous methods. Dauphas’ method, which he reports in the journal Nature, can now be used to tackle other mysteries of the cosmos that have remained unsolved for decades.

“Age determinations are crucial to a fundamental understanding of the universe,” said Thomas Rauscher, an assistant professor of physics and astronomy at the University of Basel in Switzerland. “The wide range of implications is what makes Nicolas’ work so exciting and important.”

Dauphas, an Assistant Professor in Geophysical Sciences, operates the Origins Laboratory at the University of Chicago. His wide-ranging interests include the origins of Earth’s atmosphere, the oldest rocks that may contain evidence for life on Earth and what meteorites reveal about the formation of the solar system.

In his latest work, Dauphas has honed the accuracy of the cosmic clock by comparing the decay of two long-lived radioactive elements, uranium-238 and thorium-232. According to Dauphas’ new method, the age of the Milky Way is approximately 14.5 billion years, plus or minus more than 2 billion years.

That age generally agrees with the estimate of 12.2 billion years, nearly as old as the universe itself, as determined by previously existing methods. Dauphas’ finding verifies what was already suspected, despite the drawbacks of existing methods: “After the big bang, it did not take much time for large structures to form, including our Milky Way galaxy,” he said.

The age of 12 billion years for the galaxy relied on the characteristics of two different sets of stars, globular clusters and white dwarfs. But this estimate depends on assumptions about stellar evolution and nuclear physics that scientists have yet to substantiate to their complete satisfaction.

Globular clusters are clusters of stars that exist on the outskirts of a galaxy. The processes of stellar evolution suggested that most of the stars in globular clusters are nearly as old as the galaxy itself. When the big bang occurred 13.7 billion years ago, the only elements in the universe were hydrogen, helium and a small quantity of lithium. The Milky Way’s globular clusters have to be nearly that old because they contain mostly hydrogen and helium. Younger stars contain heavier elements that were recycled from the remains of older stars, which initially forged these heavier elements in their cores via nuclear fusion.

White dwarf stars, meanwhile, are stars that have used up their fuel and have advanced to the last stage of their lives. “The white dwarf has no source of energy, so it just cools down. If you look at its temperature and you know how fast it cools, then you can approximate the age of the galaxy, because some of these white dwarfs are about as old as the galaxy,” Dauphas said.

A more direct way to calculate the age of stars and the Milky Way depends on the accuracy of the uranium/thorium clock. Scientists can telescopically detect the optical “fingerprints” of the chemical elements. Using this capability, they have measured the uranium/thorium ratio in a single old star that resides in the halo of the Milky Way.
Bookmark and Share
 
Home I Editor's Blog I News by Zone I News by Date I News by Category I Special Reports I Directory I Events I Advertise I Submit Your News I About Us I Guides
 
   Â© 2012 NewMaterials.com
Netgains Logo