Free Newsletter
Register for our Free Newsletters
Newsletter
Zones
Advanced Composites
LeftNav
Aerospace
LeftNav
Amorphous Metal Structures
LeftNav
Analysis and Simulation
LeftNav
Asbestos and Substitutes
LeftNav
Associations, Research Organisations and Universities
LeftNav
Automation Equipment
LeftNav
Automotive
LeftNav
Biomaterials
LeftNav
Building Materials
LeftNav
Bulk Handling and Storage
LeftNav
CFCs and Substitutes
LeftNav
Company
LeftNav
Components
LeftNav
Consultancy
LeftNav
View All
Other Carouselweb publications
Carousel Web
Defense File
New Materials
Pro Health Zone
Pro Manufacturing Zone
Pro Security Zone
Web Lec
Pro Engineering Zone
 
 
 
News

Soft robotic devices using water-based gels

North Carolina State University : 12 August, 2013  (Special Report)
Researchers from North Carolina State University have developed a new technique for creating devices out of a water-based hydrogel material that can be patterned, folded and used to manipulate objects. The technique holds promise for use in "soft robotics’ and biomedical applications.
Soft robotic devices using water-based gels

The technique uses hydrogels, which are water-based gels composed of water and a small fraction of polymer molecules. Hydrogels are elastic, translucent and - in theory - biocompatible. The researchers found a way to modify and pattern sections of hydrogel electrically by using a copper electrode to inject positively charged copper ions into the material. Those ions bond with negatively charged sites on the polymer network in the hydrogel, essentially linking the polymer molecules to each other and making the material stiffer and more resilient. The researchers can target specific areas with the electrodes to create a framework of stiffened material within the hydrogel. The resulting patterns of ions are stable for months in water.

“This work brings us one step closer to developing new soft robotics technologies that mimic biological systems and can work in aqueous environments,” says Dr Michael Dickey, an assistant professor of chemical and biomolecular engineering at NC State and co-author of a paper describing the work.

“In the nearer term, the technique may have applications for drug delivery or tissue scaffolding and directing cell growth in three dimensions, for example,” says Dr Orlin Velev, INVISTA Professor of Chemical and Biomolecular Engineering at NC State, the second senior author of the paper. “The bonds between the biopolymer molecules and the copper ions also pull the molecular strands closer together, causing the hydrogel to bend or flex, and the more copper ions we inject into the hydrogel by flowing current through the electrodes, the further it bends.”

The researchers were able to take advantage of the increased stiffness and bending behavior in patterned sections to make the hydrogel manipulate objects. For example, the researchers created a V-shaped segment of hydrogel. When copper ions were injected into the bottom of the V, the hydrogel flexed – closing on an object as if the hydrogel were a pair of soft tweezers. By injecting ions into the back side of the hydrogel, the tweezers opened – releasing the object.

The researchers also created a chemically actuated
“grabber” out of an X-shaped segment of hydrogel
with a patterned framework on the back of the X.
When the hydrogel was immersed in ethanol, the
non-patterned hydrogel shrank. But because the
patterned framework was stiffer than the surrounding
hydrogel, the X closed like the petals of a flower, grasping
an object. When the X-shaped structure was placed in
water, the hydrogel expanded, allowing the “petals”
to unfold and release the object.

 

 

 

We are currently planning to use this technique to develop motile, biologically compatible microdevices,” Velev says.

“It’s also worth noting that this technique works with ions other than copper, such as calcium, which are biologically relevant,” Dickey says.

Etienne Palleau and Daniel Morales. Reversible patterning and actuation of hydrogels by electrically assisted ionoprinting. Nature Communications, 2 Aug 2013.

In 2011, Velev and Dickey published research on their development of gel-like memory devices that function in wet environments.

Bookmark and Share
 
Home I Editor's Blog I News by Zone I News by Date I News by Category I Special Reports I Directory I Events I Advertise I Submit Your News I About Us I Guides
 
   Â© 2012 NewMaterials.com
Netgains Logo