Free Newsletter
Register for our Free Newsletters
Newsletter
Zones
Advanced Composites
LeftNav
Aerospace
LeftNav
Amorphous Metal Structures
LeftNav
Analysis and Simulation
LeftNav
Asbestos and Substitutes
LeftNav
Associations, Research Organisations and Universities
LeftNav
Automation Equipment
LeftNav
Automotive
LeftNav
Biomaterials
LeftNav
Building Materials
LeftNav
Bulk Handling and Storage
LeftNav
CFCs and Substitutes
LeftNav
Company
LeftNav
Components
LeftNav
Consultancy
LeftNav
View All
Other Carouselweb publications
Carousel Web
Defense File
New Materials
Pro Health Zone
Pro Manufacturing Zone
Pro Security Zone
Web Lec
Pro Engineering Zone
 
 
 
News

Video File: Gallium arsenide nanowire filaments to revolutionise solar energy?

Ecole Polytechnique Fédérale De Lausanne (EPFL) : 14 April, 2013  (Technical Article)
Imagine a solar panel more efficient than today’s best solar panels, but using 10 000 times less material. This is what EPFL researchers expect given recent findings on tiny nanowire filaments. Solar technology integrating nanowires could capture large quantities of light and produce energy with incredible efficiency at a much lower cost. This technology is possibly the future for powering microchips and the basis for a new generation of solar panels.
Video File: Gallium arsenide nanowire filaments to revolutionise solar energy?

Nanowires are extremely tiny filaments - in this case able to capture light - with a diameter in the range 10 to 1000nm. These miniscule wires are up to 1000 times smaller than the diameter of human hair, or comparable in diameter to the size of viruses.

When equipped with the right electronic properties, the nanowire becomes a tiny solar cell, transforming sunlight into electric current. Anna Fontcuberta i Morral and her team built a nanowire solar cell out of gallium arsenide, a material which is better at converting light into power than silicon. They found that it actually collects up to 12 times more light than the usual flat solar cell.

The nanowire standing vertically essentially acts like a very efficient light funnel. Even though the nanowire is only a few hundred nanometers in diameter, it absorbs light as though it were 12 times bigger. In other words, it has a greater field of vision than expected. “These nanowires capture much more light than expected,” says Fontcuberta.

Capture up to 12 times more light to produce
more energy? Nanowires do just that - and
surpass expectations on solar
energy production.

 

 

 

 

Fontcuberta’s prototype is already almost 10% more efficient at transforming light into power than allowed, in theory, for conventional single material solar panels. Furthermore, optimizing the dimensions of the nanowire, improving the quality of the gallium arsenide and using better electrical contacts to extract the current could increase the prototype’s efficiency.

Arrays of nanowire solar cells offer new prospects for energy production. This study suggests that an array of nanowires may attain 33% efficiency, in practice, whereas commercial (flat) solar panels are now only up to 20% efficient. Also, arrays of nanowires would use at least 10 000 times less gallium arsenide, allowing for industrial use of this costly material. Translating this into dollars for gallium arsenide, the cost would only be $10 per square meter instead of $100 000.

Nature Photonics 24 March 2013

Bookmark and Share
 
Home I Editor's Blog I News by Zone I News by Date I News by Category I Special Reports I Directory I Events I Advertise I Submit Your News I About Us I Guides
 
   ¬© 2012 NewMaterials.com
Netgains Logo