Free Newsletter
Register for our Free Newsletters
Newsletter
Zones
Advanced Composites
LeftNav
Aerospace
LeftNav
Amorphous Metal Structures
LeftNav
Analysis and Simulation
LeftNav
Asbestos and Substitutes
LeftNav
Associations, Research Organisations and Universities
LeftNav
Automation Equipment
LeftNav
Automotive
LeftNav
Biomaterials
LeftNav
Building Materials
LeftNav
Bulk Handling and Storage
LeftNav
CFCs and Substitutes
LeftNav
Company
LeftNav
Components
LeftNav
Consultancy
LeftNav
View All
Other Carouselweb publications
Carousel Web
Defense File
New Materials
Pro Health Zone
Pro Manufacturing Zone
Pro Security Zone
Web Lec
Pro Engineering Zone
 
 
 
News

A breakthrough in classification of new bacteria

Society For General Microbiology : 07 June, 2007  (Technical Article)
An article in Microbiology Today reports that classifications of new bacteria have been made easier after a study found that
German researchers looked at the minimum standards used to compare the genetic material of new bacteria to well-known types and found that increasing the threshold for one genomic test could remove the need to carry out a second, more difficult test.

“Describing new bacterial species is a highly demanding process,” says Professor Erko Stackebrandt of the German Collection of Micro-organisms and Cell Cultures in Braunschweig, Germany. “It involves a broad range of tests set by international committees and only a few labs have access to all of the methods needed.”

Two of these standard tests look specifically at the genome of an organism and compare it to that of other known bacteria. It is these genomic tests that Professor Stackebrandt and his colleagues concentrated on to help speed up the process of identifying new species.

To study how different bacteria relate to each other, microbiologists use 16S rRNA gene analysis. This can be helped by using an additional technique called DNA-DNA hybridisation to show how closely related two species are.

“We found that by raising the threshold of 16S rRNA from the current level of 97.5% to 98.7% could have prevented nearly two-thirds of the more difficult DNA-DNA hybridisations that were carried out”, explains Professor Stackebrandt. “And if the 16S rRNA threshold was increased further, to 99%, then nine out of 10 DNA-DNA hybridisations could have been avoided, without any loss of scientific accuracy in the classifications of the new species.”

There are 400-600 descriptions of new bacteria every year, but it is estimated that up to one billion new species are still waiting to be isolated and named. These bacteria could be holding the keys to speeding up industrial processes, cleaning up the environment, or creating new drugs for human diseases. By reducing the work needed to describe a new species, microbiologists could significantly increase the number of new microbiological products.
Bookmark and Share
 
Home I Editor's Blog I News by Zone I News by Date I News by Category I Special Reports I Directory I Events I Advertise I Submit Your News I About Us I Guides
 
   Â© 2012 NewMaterials.com
Netgains Logo