Free Newsletter
Register for our Free Newsletters
Newsletter
Zones
Advanced Composites
LeftNav
Aerospace
LeftNav
Amorphous Metal Structures
LeftNav
Analysis and Simulation
LeftNav
Asbestos and Substitutes
LeftNav
Associations, Research Organisations and Universities
LeftNav
Automation Equipment
LeftNav
Automotive
LeftNav
Biomaterials
LeftNav
Building Materials
LeftNav
Bulk Handling and Storage
LeftNav
CFCs and Substitutes
LeftNav
Company
LeftNav
Components
LeftNav
Consultancy
LeftNav
View All
Other Carouselweb publications
Carousel Web
Defense File
New Materials
Pro Health Zone
Pro Manufacturing Zone
Pro Security Zone
Web Lec
Pro Engineering Zone
 
 
 
News

Acoustic technique offers improved medical disinfection

Georgia Institute Of Technology : 11 December, 2002  (New Product)
Preliminary studies by scientists at the Georgia Institute of Technology and Georgia State University showed the technique killed more than 90 percent of bacteria in a test vial that also contained a mild solution of isopropyl alcohol. Results of the work were presented December 5 at the First Pan-American/Iberian Meeting on Acoustics in Cancun, Mexico.
Preliminary studies by scientists at the Georgia Institute of Technology and Georgia State University showed the technique killed more than 90 percent of bacteria in a test vial that also contained a mild solution of isopropyl alcohol. Results of the work were presented December 5 at the First Pan-American/Iberian Meeting on Acoustics in Cancun, Mexico.

'Complex and extremely expensive endoscopes and related surgical equipment are very vulnerable to heat, and they are challenging to clean,' explained Dr. Stephen Carter, an Atlanta-area dentist who is working with Georgia Tech Professor Kenneth Cunefare to develop the technique. 'We believe that our methods will sterilize in shorter periods of time, which would be a substantial advantage for expensive medical equipment.'

The patented technique uses a form of cavitation, a phenomenon in which acoustic energy applied to a liquid induces the creation of voids, or bubbles, that release energy when they collapse. By pressurizing their test chamber while inducing cavitation, Cunefare and Carter create a form of transient cavitation that causes violent collapse of the bubbles.

The enhanced cavitation takes advantage of the 'anomalous depth effect,' in which the impact of bubble collapse increases dramatically when subjected to roughly twice normal atmospheric pressure. Scientists have studied the phenomenon for years because it can damage submarines' propellers when operating at certain depths.

When applied to a solution of 66 percent isopropyl alcohol containing two forms of 'marker' bacterial spores, Bacillus stearothermophilus and Bacillus subtilis, the enhanced cavitation reduced the bacterial count by more than 90 percent, Cunefare said. Research indicates that both the alcohol solution and increased pressure are necessary for killing the spores with cavitation.
Bookmark and Share
 
Home I Editor's Blog I News by Zone I News by Date I News by Category I Special Reports I Directory I Events I Advertise I Submit Your News I About Us I Guides
 
   © 2012 NewMaterials.com
Netgains Logo