Free Newsletter
Register for our Free Newsletters
Newsletter
Zones
Advanced Composites
LeftNav
Aerospace
LeftNav
Amorphous Metal Structures
LeftNav
Analysis and Simulation
LeftNav
Asbestos and Substitutes
LeftNav
Associations, Research Organisations and Universities
LeftNav
Automation Equipment
LeftNav
Automotive
LeftNav
Biomaterials
LeftNav
Building Materials
LeftNav
Bulk Handling and Storage
LeftNav
CFCs and Substitutes
LeftNav
Company
LeftNav
Components
LeftNav
Consultancy
LeftNav
View All
Other Carouselweb publications
Carousel Web
Defense File
New Materials
Pro Health Zone
Pro Manufacturing Zone
Pro Security Zone
Web Lec
Pro Engineering Zone
 
 
 
News

Bacterial genome sheds light on synthesizing cancer-fighting compounds

National Science Foundation : 09 May, 2005  (Company News)
Sea squirts around the world are breathing a sigh of relief, as they no longer run the risk of being harvested for their natural disease-fighting substances. Scientists recently discovered that the bacterium Prochloron didemnii, which lives symbiotically inside the sea squirt, actually produces the desired patellamides, compounds that may one day be used in cancer treatment.
Sea squirts around the world are breathing a sigh of relief, as they no longer run the risk of being harvested for their natural disease-fighting substances. Scientists recently discovered that the bacterium Prochloron didemnii, which lives symbiotically inside the sea squirt, actually produces the desired patellamides, compounds that may one day be used in cancer treatment.

Despite decades of attempts, scientists could not successfully cultivate Prochloron in the laboratory once the bacterium was isolated from the sea squirt. Because samples of Prochloron were easily contaminated with remnants of life inside its animal home, scientists couldn't tell if the bacterium or the sea squirt produced the sought-after patellamides, until now.

By searching for patellamide synthesis instructions in genomic sequences, scientists found the bacterium indeed has the necessary genes to produce these potentially important biochemicals, solving the source mystery. Knowing which genes Prochloron used for patellamide production also allowed researchers to synthesize the potentially important compounds in the lab using a so-called laboratory workhorse, the bacterium E. coli.

Scientists from The Institute for Genomic Research, the University of Utah and the University of California, San Diego, report findings in this week's online edition of the Proceedings of the National Academy of Sciences.

'This project revealed detailed information about the metabolic capabilities of Prochloron, details that proved to be difficult to determine by other means, ' said Patrick Dennis, manager for Prochloron genome sequencing at the National Science Foundation, which funded the study. 'Furthermore,' he added, 'by producing patellamides in the lab, the team demonstrated an important proof of principle for the biosynthesis of naturally occurring marine products.'
Bookmark and Share
 
Home I Editor's Blog I News by Zone I News by Date I News by Category I Special Reports I Directory I Events I Advertise I Submit Your News I About Us I Guides
 
   © 2012 NewMaterials.com
Netgains Logo