Free Newsletter
Register for our Free Newsletters
Newsletter
Zones
Advanced Composites
LeftNav
Aerospace
LeftNav
Amorphous Metal Structures
LeftNav
Analysis and Simulation
LeftNav
Asbestos and Substitutes
LeftNav
Associations, Research Organisations and Universities
LeftNav
Automation Equipment
LeftNav
Automotive
LeftNav
Biomaterials
LeftNav
Building Materials
LeftNav
Bulk Handling and Storage
LeftNav
CFCs and Substitutes
LeftNav
Company
LeftNav
Components
LeftNav
Consultancy
LeftNav
View All
Other Carouselweb publications
Carousel Web
Defense File
New Materials
Pro Health Zone
Pro Manufacturing Zone
Pro Security Zone
Web Lec
Pro Engineering Zone
 
 
 
News

Building a better virtual raindrop

DOE/Brookhaven National Laboratory : 01 May, 2007  (Technical Article)
A new way of mathematically modeling the formation of rain drops in clouds may improve our understanding of Earth
A new way of mathematically modeling the formation of rain drops in clouds may improve our understanding of Earth’s climate, cloud formation and movement, and the effect that small airborne particles have on rainfall. In a paper published online by Geophysical Research Letter, atmospheric physicist Yangang Liu and atmospheric chemists Peter Daum and Robert McGraw of the U.S. Department of Energy’s Brookhaven National Laboratory present a new model, which, they say, helps to overcome some of the shortfalls of previous approaches.

In the first step in the formation of raindrops, small cloud droplets combine to form larger drops in a process known as autoconversion. The mathematical representation of this process is used in simulating cloud activity and global climate patterns. But according to the Brookhaven team, the model used previously has been oversimplified and vague because some of the terms in the equation lacked a physical basis.

To address this problem, Liu and his colleagues developed a new model for autoconversion that takes into account the limited size range of droplets that interact to create raindrops. The new model also accounts for the amount of liquid water present and the concentration of droplets in a cloud. The authors assert that their model avoids guesswork by being more grounded in physics and is as easy to use as other models.
Bookmark and Share
 
Home I Editor's Blog I News by Zone I News by Date I News by Category I Special Reports I Directory I Events I Advertise I Submit Your News I About Us I Guides
 
   Â© 2012 NewMaterials.com
Netgains Logo