Free Newsletter
Register for our Free Newsletters
Newsletter
Zones
Advanced Composites
LeftNav
Aerospace
LeftNav
Amorphous Metal Structures
LeftNav
Analysis and Simulation
LeftNav
Asbestos and Substitutes
LeftNav
Associations, Research Organisations and Universities
LeftNav
Automation Equipment
LeftNav
Automotive
LeftNav
Biomaterials
LeftNav
Building Materials
LeftNav
Bulk Handling and Storage
LeftNav
CFCs and Substitutes
LeftNav
Company
LeftNav
Components
LeftNav
Consultancy
LeftNav
View All
Other Carouselweb publications
Carousel Web
Defense File
New Materials
Pro Health Zone
Pro Manufacturing Zone
Pro Security Zone
Web Lec
Pro Engineering Zone
 
 
 
News

Chemical force microscopy chooses right materials for new nanocomposites

Georgia Institute Of Technology : 24 March, 2003  (New Product)
Light, conductive and nearly as strong as steel, carbon nanotubes are being combined with lightweight polymers to produce composite materials with properties attractive for use on future space vehicles. But choosing the right polymer for optimal mechanical performance at the nanometer scale requires a lengthy trial-and-error process.
Light, conductive and nearly as strong as steel, carbon nanotubes are being combined with lightweight polymers to produce composite materials with properties attractive for use on future space vehicles. But choosing the right polymer for optimal mechanical performance at the nanometer scale requires a lengthy trial-and-error process.

By adapting tiny cantilever and position measurement systems used in atomic force microscopy, researchers at the Georgia Institute of Technology are helping their NASA colleagues shorten that process. Using chemical force microscopy, they are producing detailed information about adhesion between single-walled carbon nanotubes and molecules of candidate polymers with different functional groups.

'Our hypothesis is that the stronger the adhesive interaction between molecules and nanotubes, the more likely it is that the polymer will fully wet the nanotubes, break up aggregations of nanotubes and form a mechanically-sound composite,' said Larry Bottomley, a professor in the Georgia Tech School of Chemistry and Biochemistry. 'The intent is to come up with two or three chemical groups that will give us the strongest interaction, and then incorporate these onto polymers for further studies.

Details of the research were presented March 23 at the 225th American Chemical Society National Meeting in New Orleans, LA. The Advanced Materials and Processing Branch of NASA's Langley Research Center has supported the work under grant NGT-1-02002.
Bookmark and Share
 
Home I Editor's Blog I News by Zone I News by Date I News by Category I Special Reports I Directory I Events I Advertise I Submit Your News I About Us I Guides
 
   © 2012 NewMaterials.com
Netgains Logo