Free Newsletter
Register for our Free Newsletters
Advanced Composites
Amorphous Metal Structures
Analysis and Simulation
Asbestos and Substitutes
Associations, Research Organisations and Universities
Automation Equipment
Building Materials
Bulk Handling and Storage
CFCs and Substitutes
View All
Other Carouselweb publications
Carousel Web
Defense File
New Materials
Pro Health Zone
Pro Manufacturing Zone
Pro Security Zone
Web Lec
Pro Engineering Zone

Concept for rapid-fire thermonuclear explosions proposed by Sandia scientists

DOE/Sandia National Laboratories : 31 December, 2006  (Technical Article)
A simple theoretical concept to solve the staggeringly difficult problem of maintaining intact electrical transmission lines to produce rapidly repeated thermonuclear explosions for peacetime purposes has been proposed by researchers at the Department of Energy's Sandia National Laboratories.
The method is meant to advance the day of relatively cheap, clean, fusion-produced energy through machines like Sandia's Z accelerator.

The concept was presented informally by Sandia researcher Mark Derzon in late July to researchers in Snowmass, Colo., at the first extended meeting of fusion researchers both inertial and magnetic.

There, scientists interested by the concept placed Z pinches on the list for recommended scientific exploration as an energy source.

The Z-pinch accelerator at Sandia, known simply as Z, is far and away the world's most powerful laboratory X-ray source. However, funding to date for Z has been related to its weapons-program usefulness.

'Getting Z listed as a potential source of energy is a major leap forward for the Z fusion program,' says Tom Hunter, Sandia Senior VP for the nuclear weapons program. 'This may be an opportunity to make a significant contribution to our nation's energy security.'

While weapons research requires only a single explosion to produce data, fusion meant to create virtually unlimited electrical power requires the high-yield implosion of a pea-sized deuterium-tritium pellet every few seconds, says Craig Olson, who organized the inertial fusion section of the Snowmass meeting.

The proposed power generation process for inertial fusion resembles the rapid series of explosions that drive a gasoline engine. Instead of gasoline and air interacting chemically, isotopes of hydrogen fuse. The problem has been that the power of a high-yield thermonuclear explosion would damage not only the pellet-target, which could be rapidly replaced, but also the last five feet of power lines connected to the target. This has been a stumbling block in envisioning Z as a source of real-world power, since a near-continuous stream of rapid-fire explosions is necessary to continuously create steam to turn turbines, says Derzon, who with principal collaborators Gary Rochau, Greg Rochau and Steve Slutz came up with the new concept. Antonio Zamora, manufacturing liaison, provided the cost estimate for the recyclable transmission lines that suggests the concept is feasible.

'The problem has always been how to separate power supply from the physical target,' says Derzon. 'We propose to get around the problem by using recyclable transmission lines, perhaps of lithium or flibe [fluorine, lithium, and beryllium].' Hollow spheres, 'Christmas tree' ornaments, of lithium or flibe surrounding the lines would serve as the heat exchange medium and moderators of neutron flux.

Transmission lines would cycle on a large horizontal carousel. After the firing, or shot, the then-liquefied lithium or flibe would be pushed out of the chamber and its heat used to drive electrical generators. Tritium, an isotope of hydrogen essential for the fusion process, would be harvested from the liquefied metal. Finally, the spent metal would be put in a mold to form new transmission lines and new 'Christmas tree' ornaments.

Rather than trying to create a vacuum in the entire chamber after each shot, Derzon's group, consulting with Olson and Rick Spielman , proposes to pump only the space between recyclable transmission lines, a much quicker, cheaper, and easier procedure than emptying the whole chamber.

'Now it's just a concept. At Snowmass, they were very receptive and we hope to get resources to do a design study,' says Derzon.

Nuclear fusion could be a way to produce energy not only on Earth but also in spacecraft or in space colonies, since its power source, isotopes of hydrogen, for the most part is readily available.
Bookmark and Share
Home I Editor's Blog I News by Zone I News by Date I News by Category I Special Reports I Directory I Events I Advertise I Submit Your News I About Us I Guides
   © 2012
Netgains Logo