Free Newsletter
Register for our Free Newsletters
Newsletter
Zones
Advanced Composites
LeftNav
Aerospace
LeftNav
Amorphous Metal Structures
LeftNav
Analysis and Simulation
LeftNav
Asbestos and Substitutes
LeftNav
Associations, Research Organisations and Universities
LeftNav
Automation Equipment
LeftNav
Automotive
LeftNav
Biomaterials
LeftNav
Building Materials
LeftNav
Bulk Handling and Storage
LeftNav
CFCs and Substitutes
LeftNav
Company
LeftNav
Components
LeftNav
Consultancy
LeftNav
View All
Other Carouselweb publications
Carousel Web
Defense File
New Materials
Pro Health Zone
Pro Manufacturing Zone
Pro Security Zone
Web Lec
Pro Engineering Zone
 
 
 
News

During earthquakes, mineral gel may reduce rock friction to zero

National Science Foundation : 29 January, 2004  (Company News)
Researchers have discovered a mineral gel created when rocks abrade each other under earthquake-like conditions. If present in faults during a quake, the gel may reduce friction to nearly zero in some situations, resulting in larger energy releases that could cause more damage.
Researchers have discovered a mineral gel created when rocks abrade each other under earthquake-like conditions. If present in faults during a quake, the gel may reduce friction to nearly zero in some situations, resulting in larger energy releases that could cause more damage.

Terry Tullis and David Goldsby of Brown University in Providence, R.I., and Giulio Di Toro of the University of Padova in Italy announce their findings in the Jan. 29 issue of the journal Nature.

The researchers sheared quartz-rich rocks against each other under controlled conditions, simulating several aspects of a geologic fault environment. Future experiments will take advantage of a salvaged 100-horsepower BMW motorcycle engine, which will allow the apparatus to reach seismic slip speeds of one meter per second.

As the shearing progressed, resistance between the rocks approached zero at the highest shearing speeds. Scanning electron microscope images suggest that mineral powder, in this case comprised of silica, generated during the abrasion combines with water from the atmosphere to form a gel that lubricates the rock surfaces.

If confirmed with field observations, researchers could apply these findings to computer earthquake models. The simulations may help scientists and emergency personnel better predict the magnitude of strong ground motions that damage man-made structures.

All three researchers were supported by NSF awards 0003543 and 0352548, and grants from the United States Geological Survey. Di Toro was also supported by an Italian MURST grant.
Bookmark and Share
 
Home I Editor's Blog I News by Zone I News by Date I News by Category I Special Reports I Directory I Events I Advertise I Submit Your News I About Us I Guides
 
   © 2012 NewMaterials.com
Netgains Logo