Free Newsletter
Register for our Free Newsletters
Newsletter
Zones
Advanced Composites
LeftNav
Aerospace
LeftNav
Amorphous Metal Structures
LeftNav
Analysis and Simulation
LeftNav
Asbestos and Substitutes
LeftNav
Associations, Research Organisations and Universities
LeftNav
Automation Equipment
LeftNav
Automotive
LeftNav
Biomaterials
LeftNav
Building Materials
LeftNav
Bulk Handling and Storage
LeftNav
CFCs and Substitutes
LeftNav
Company
LeftNav
Components
LeftNav
Consultancy
LeftNav
View All
Other Carouselweb publications
Carousel Web
Defense File
New Materials
Pro Health Zone
Pro Manufacturing Zone
Pro Security Zone
Web Lec
Pro Engineering Zone
 
 
 
News

Four innovations areas for sustainable aviation include composites NDI

Agency For Science, Technology And Research (A*STAR) : 14 February, 2014  (Company News)
The Agency for Science, Technology and Research (A*STAR) will share its latest R&D initiatives for sustainable aviation at the Singapore Airshow 2014 at Changi Exhibition Centre, Booth D35 from 11-16 February. The innovations on display will focus on four key areas: aviation remanufacturing technology; analytics; aviation communications; and non-destructive Inspection (NDI) for composites and structures.
With approximately 3.3 billion people expected to fly commercially by 2014, and 38 million tonnes of cargo to be carried the same year, research development in manufacturing efficiencies and maintenance processes will be critical for safe and sustainable air travel, and big data technologies will be key for more efficient operations and handling passenger movement.
 
The innovations on display will focus on improving manufacturing, maintenance and communication for sustainable aviation. Two of the highlights that will be showcased at the Airshow are: 
 
Laser aided additive manufacturing (LAAM): This additive manufacturing process, also known as 3D printing, uses high energy laser beams to melt additive materials to repair damaged parts or fabricate fully dense components. The process can help shorten manufacturing time and reduce material waste significantly. 
 
Data Analytics: A*STAR will showcase its award-winning flight prediction algorithm which, in a recent international competition, utilised data analytics to estimate flight arrivals nearly 40 percent better than the current industry estimates. This can result in greater efficiency for airlines, with huge potential savings in fuel and crew costs and improved convenience for passengers. Other data analytics innovations from A*STAR include a cutting-edge sensor network system and analytics platform that can accurately predict equipment failure; and a video analytics system with real-time human crowd detection, cross-camera tracking, event detection and semantic mining system for information discoveries.
 
Research for a sustainable future in aviation 
 
Since 2007, the A*STAR Aerospace Programme (AP) has undertaken and completed more than 50 multi-disciplinary projects for the AP Consortium. These include projects targeted at further development of sustainability solutions for greater aircraft efficiency:
 
The introduction of a superhydrophobic coating can improve aircraft operations and reduce potential mechanical damages to the aircraft. The coating can repel water on the skin of aircraft to protect the surface from condensation, friction, corrosion and mould. This will reduce drag and improve aerodynamics, leading to better aircraft performances and fuel savings. This technology will also be further developed by the Aerospace Programme into an ice-phobic coating to reduce the formation of ice. 
 
Through modelling, A*STAR researchers are better able to understand the penetration mechanism of fluid and moisture into composite material, and their effect on structural integrity and surface adhesion property. This is significant as today's aircraft structures are commonly made up of composite materials to reduce the weight of the aircraft in order to be more fuel efficient. Understanding the characteristics of composites when exposed to extensive water penetration will enable users to take preventive and corrective measures under Maintenance, Repair and Overhaul (MRO) activities.
 
The current members of the AP Consortium include leading commercial airliner manufacturers (Airbus, Boeing, Bombardier and Embraer); large engines manufacturers (GE, Pratt & Whitney and Rolls-Royce); components, systems and specialist material OEMs (Hexcel, Honeywell, Panasonic and SAFRAN); key players in aviation in Singapore (DSTA, SIA Engineering and ST Aerospace) and local SMEs such as Addvalue Technologies, Flight Focus and TruMarine.
 
Aviation Technologies Showcased at the A*STAR Booth
 
Aviation Communications
 
1. Electromagnetic Compatibility (EMC) Tool for Antennas on Airplane
 
The electromagnetic interference (EMI) from transmitters / emitters can be a serious problem for flight and munition safety as it disrupts the performance of a circuit, causing loss of functionality and inadvertent activation of systems. An advanced simulation technology is developed to solve the problem of evaluating computing between two or more integrated sensor systems onboard electrically large aircrafts. The developed simulation technology allows for much faster analysis of sensors on aircrafts and help engineers identify proper locations for the installation of new sensors on aircraft.
 
2. Software Defined Radio
 
Software Defined Radio (SDR) architecture integrates Policy-based Management to create a platform that adapts automatically to changing conditions. SDR technology replaces traditional hardware-based radio signal processing tasks with software components while policy-based management allows configuration and management decisions to be autonomously made by a computer system based on a set of rules specified by the operator. In a space and weight constrained application such as in an aircraft cabin, a single unit of the platform can be used to provide wireless services to passengers using diverse access technologies such as Global System for Mobile Communications (GSM), Code division multiple access (CDMA), wireless local area network (WLAN) and more, keeping them connected throughout the flight.
 
3. Disruption Tolerant Networking
 
Disruption-tolerant networking (DTN), a new paradigm for message routing in intermittently-connected networks, can be employed to mitigate these challenges and enable reliable communications in airborne networks.
 
Non destructive inspection (NDI) for Composites & Structures
 
Non destructive inspection (NDI) can greatly benefit maintenance, repairs and overhaul (MRO) applications for timely detection of defects that can pose a threat to aircraft safety. Some of the NDI techniques include: 
 
1. Detection system for water ingress (water leakage or seepage)
 
Inspection of water ingress, or the leakage of water, is made easier with a simple and sensitive process that will allow better strategies in preventive maintenance of the aircraft. With this system, it will act as a tool for fast and reliable detection of water ingress along the rivets/bolts in composite parts.
 
2. Structured heating thermography
 
Structured heating can highlight low contrast defects, also referred to a degradation of Fiber Reinforced Plastics (FRPs), now in a more predictable manner. This is an improvement from the lack of reliable tools that does not usually detect such defects non-destructively.
 
3. Millimeter Wave Inspection
 
Early detection of corrosion is crucial to prevent relatively large area from being rehabilitated, which may require significant time, resources, and downtime. The initiation of corrosion is preceded by the presence of corrosion precursor pittings. Detection of precursor pittings yields information about the susceptibility to corrosion initiation.
 
A millimeter wave signal (30GHz to 300GHz) is introduced through a waveguide/antenna onto a sample under test. The signal is reflected back from any slight variation in thickness and/or dielectric coatings such as paint and corrosion, thereby revealing the presence and severity of a corroded region.
 
4. Piezoelectric Sensors
 
Piezoelectric sensors are not only able to listen to the occurrence of structural failures and achieve real-time monitoring for structural damages, but also can realize mechanical energy harvesting for powering up wireless signal transmission. Piezoelectric ultrasonic NDT can offer the ability to detect physical flaws with a large penetration depth.
 
Aviation Remanufacturing Technology
 
1. Remanufacturing of Engine Components
 
Engine Components can now be remanufactured through an interdisciplinary approach using state-of-the-art technology. This can enhance capability, and expand the range of repairable parts, whilst meeting stringent environmental regulations.
 
Successful remanufacturing of complex 3D components requires a host of processes, including disassembly, cleaning, inspection for defects, digitising of part geometry, adaptive repair and machining, and surface finishing. 
 
2. Laser Aided Additive Manufacturing for Aerospace Applications
 
Using lasers, additive materials in the form of wire or powder can be melted to build a part, layer by layer. This additive manufacturing process known as Laser Aided Additive Manufacturing is capable of repairing damaged parts, as well as directly fabricating fully dense components with the aid of CAD/CAM. The process can reduce the manufacturing time and the material waste, reuse the materials, reduce the down time and heavy capital expenditures for the replacement with new parts. 
 
3. Stripping of Protective Coating on blades using Laser
 
Environmentally-friendly laser can be used to strip off Thermal Barrier Coating (TBC) and Bond Layer (BL) from aero engine components on platform and around cooling holes rather than using corrosive agents. This technology uses a robotic laser system with easy programming methodology for automated and productive stripping of entire single vane.
 
Analytics
 
1. Image Analytics: "De-Haze" Software
 
With the "De-haze" software, images of outdoor scenes would no longer be compromised by haze, fog and smoke, in terms of contrast and colour fidelity. The haze removal technology effectively transforms the hazy image to a sharper and clearer image.
 
2. Data Analytics: Boosting Productivity with Predictive Monitoring
 
Equipment failures and operational hiccups can be life-threatening in the aviation industry and any emergency maintenance of such equipment failures is often very costly and unproductive. This system consists of a sensor network and an analytics platform to accurately predict equipment failure from real-time updates of the equipment's condition.
 
3. Flight Prediction
 
The flight prediction algorithm won first place at the GE Flight Quest Competition for producing flight arrival estimates that were 40% better than the industry standard. This was achieved by creative extraction of features and the application of Machine Learning techniques that automatically captured the complex interaction between weather and congestion factors. This can help airlines better predict flight timings which would help reduce cost, provide greater efficiency and increase convenience for passengers.
 
4. Understanding Events with Video Analytics
 
Video Analytics makes use of machines to understand events, and will only sound the alert when necessary. The system is a visualization tool with real-time human crowd detection, cross-camera tracking, event detection and semantic mining system for information discoveries.
 
 
[1] Source: IATA Forecast Press Release 2011: http://www.iata.org/pressroom/pr/pages/2011-02-14-02.aspx
 
Bookmark and Share
 
Home I Editor's Blog I News by Zone I News by Date I News by Category I Special Reports I Directory I Events I Advertise I Submit Your News I About Us I Guides
 
   © 2012 NewMaterials.com
Netgains Logo