Free Newsletter
Register for our Free Newsletters
Newsletter
Zones
Advanced Composites
LeftNav
Aerospace
LeftNav
Amorphous Metal Structures
LeftNav
Analysis and Simulation
LeftNav
Asbestos and Substitutes
LeftNav
Associations, Research Organisations and Universities
LeftNav
Automation Equipment
LeftNav
Automotive
LeftNav
Biomaterials
LeftNav
Building Materials
LeftNav
Bulk Handling and Storage
LeftNav
CFCs and Substitutes
LeftNav
Company
LeftNav
Components
LeftNav
Consultancy
LeftNav
View All
Other Carouselweb publications
Carousel Web
Defense File
New Materials
Pro Health Zone
Pro Manufacturing Zone
Pro Security Zone
Web Lec
Pro Engineering Zone
 
 
 
News

Gamma ray hide & seek

Weizmann Institute Of Science : 16 May, 2000  (Company News)
Draping the earth and entire universe in a thin, ever-present veil, their origin remains one of the greatest puzzles of cosmology. However, the mystique of gamma rays, particles of light comprising the most energetic and penetrating form of electromagnetic radiation, may soon diminish thanks to research by Dr. Eli Waxman of the Weizmann Institute's Condensed Matter Physics Department together with Prof. Abraham Loeb of the Harvard-Smithsonian Center for Astrophysics.
Draping the earth and entire universe in a thin, ever-present veil, their origin remains one of the greatest puzzles of cosmology. However, the mystique of gamma rays, particles of light comprising the most energetic and penetrating form of electromagnetic radiation, may soon diminish thanks to research by Dr. Eli Waxman of the Weizmann Institute's Condensed Matter Physics Department together with Prof. Abraham Loeb of the Harvard-Smithsonian Center for Astrophysics.

Their study, reported in the May 11 issue of Nature, suggests that most of the gamma radiation reaching the earth may actually be leftover energy from massive shock waves induced by gravitational forces. Operating on intergalactic clouds of gas, these forces caused them to collapse into themselves, creating giant galactic clusters. This process produced electrons moving at nearly the speed of light, roughly 185,000 miles per second. The electrons then collided with low energy photons of the 'cosmic microwave background radiation,' which is believed to be an 'echo' of the Big Bang (the point in time billions of years ago when the universe was created in a cosmic explosion). The collision scattered the photons and increased the energy of a fraction of them to that of gamma rays, thus producing the gamma-ray background radiation seen in today's universe.

The model proposed by Waxman and Loeb, which is consistent with the theory of particle development following the Big Bang, may shed light on the amount of gaseous material currently captured within intergalactic clouds, thereby unraveling another longstanding astrophysical mystery, that of 'missing matter.' According to the Big Bang theory, the amount of ordinary matter (as opposed to 'dark matter,' which is invisible since it does not emit light) in the universe is much larger than that observed in stars and galaxies. Most of the ordinary matter in the universe may therefore be captured within intergalactic clouds, and the observed gamma-ray photons may be the first signature of its existence.

The model and its findings will be examined in upcoming years via an American research satellite probing gamma radiation throughout the universe, as well as a series of earth-based radio wave sensors.
Bookmark and Share
 
Home I Editor's Blog I News by Zone I News by Date I News by Category I Special Reports I Directory I Events I Advertise I Submit Your News I About Us I Guides
 
   © 2012 NewMaterials.com
Netgains Logo