Free Newsletter
Register for our Free Newsletters
Newsletter
Zones
Advanced Composites
LeftNav
Aerospace
LeftNav
Amorphous Metal Structures
LeftNav
Analysis and Simulation
LeftNav
Asbestos and Substitutes
LeftNav
Associations, Research Organisations and Universities
LeftNav
Automation Equipment
LeftNav
Automotive
LeftNav
Biomaterials
LeftNav
Building Materials
LeftNav
Bulk Handling and Storage
LeftNav
CFCs and Substitutes
LeftNav
Company
LeftNav
Components
LeftNav
Consultancy
LeftNav
View All
Other Carouselweb publications
Carousel Web
Defense File
New Materials
Pro Health Zone
Pro Manufacturing Zone
Pro Security Zone
Web Lec
Pro Engineering Zone
 
 
 
News

Germany expand the tool kit of colloid particles and make new coloured finishes possible

Max Planck Society : 10 November, 2006  (Technical Article)
Scientists at the Max Planck Institute of Colloids and Interfaces have used ion bombardment and gold metallisation to produce a new family of particles whose bonding behaviour can be chemically tailored. With these particles, scientists hope not only to be able to perform better research on the dynamics of solids and molecules. The discovery could also bring about, among other things, the development of new finishes which change their colour with temperature.
Nail polish and expensive cars can nowadays shimmer in many colours, thanks to progress in the field of colloid chemistry, the chemistry of small particles. The bright colours in modern finishes are created because the light is reflected at layers of regularly arranged colloid particles. Individual colours are either removed or strengthened; the thickness of the layers, what is known as the 'lattice constant', determines the colour. Because we can nowadays tailor the spherical shape and the surface of the particles, we can produce optimised crystals with the desired lattice constant in the range of visible light.

Colloids can indeed do much more: they are also interesting model systems for solid-state physics, because the bonding behaviour of the relatively large particle can be compared with that of much smaller atoms. Since they react more slowly than atoms, we can use them to observe and study processes in solid-state physics. But there is a problem: most atoms, unlike most other particles, are not by rule spherically symmetric, but rather have deformed 'orbitals' which project into space like dumbbells or ovals.

The team of researchers from the Max Planck Institute of Colloids and Interfaces, led by Dr Wang, has now produced particles that do not interact with their neighbours in spherically symmetric ways. So they placed a colloidal crystal on a surface and bombarded it with reactive ions, reducing the particles in the upper layer to the desired size and expanding the free surfaces between the colloids.

They also metallised the crystal with gold. Part of the gold passed through the gaps in the upper layer as if through a stencil, all the way to the lower layers. In this way, patterns of metallisation of various symmetries and at nanoscale sizes are produced. Gold surprisingly also lodged itself in the deep layers on the underside of the particles.

For years, chemistry has had a number of methods to intentionally use gold in reactions, for example, in joining particular molecules. Thus the particles partially overlaid with gold expand the tool kit of 'colloid atoms'. The chemists hope that in the future they will be able to build 'colloid molecules' or new kinds of colloid crystals. For the chemistry of colours, too, there are more possibilities: new, shimmering colours, that, for example, change with the surrounding temperature or humidity. In the long-term, however, the most attractive applications appear to be in optical data processing.
Bookmark and Share
 
Home I Editor's Blog I News by Zone I News by Date I News by Category I Special Reports I Directory I Events I Advertise I Submit Your News I About Us I Guides
 
   © 2012 NewMaterials.com
Netgains Logo