Free Newsletter
Register for our Free Newsletters
Newsletter
Zones
Advanced Composites
LeftNav
Aerospace
LeftNav
Amorphous Metal Structures
LeftNav
Analysis and Simulation
LeftNav
Asbestos and Substitutes
LeftNav
Associations, Research Organisations and Universities
LeftNav
Automation Equipment
LeftNav
Automotive
LeftNav
Biomaterials
LeftNav
Building Materials
LeftNav
Bulk Handling and Storage
LeftNav
CFCs and Substitutes
LeftNav
Company
LeftNav
Components
LeftNav
Consultancy
LeftNav
View All
Other Carouselweb publications
Carousel Web
Defense File
New Materials
Pro Health Zone
Pro Manufacturing Zone
Pro Security Zone
Web Lec
Pro Engineering Zone
 
 
 
News

New novel, energy frugal robots walk like we do

National Science Foundation : 17 February, 2005  (Company News)
At a Feb. 17 media briefing during the annual meeting of the American Association for the Advancement of Science, members of three independent research teams jointly unveiled a new breed of powered, energy efficient, two-legged robots with a surprisingly human gait.
The new technologies are described in the Feb. 18 issue of the journal Science.

Researchers from Cornell University and the Massachusetts Institute of Technology, and their colleagues from Delft University of Technology in the Netherlands, displayed video footage of all three bipedal robots and demonstrate the biped developed at MIT.

'These innovations are a platform upon which others will build,' says Michael Foster, an expert on computer and information science and engineering and one of the NSF managers who oversaw the research. 'This is the foundation for what we may see in robotic control in the future.'

By applying concepts rooted in 'passive-dynamic walkers' devices that can walk down a gentle slope powered only by the pull of gravity, the engineers have crafted robots like the Cornell biped that walk on level ground using one-half the wattage of a standard, compact fluorescent light bulb.

'The biped walking mechanism in robots is limited by on-board battery power,' says Junku Yuh, NSF expert on intelligent systems, who also oversaw the research. 'The Cornell team's passive mechanism helps greatly reduce the power requirement. Their work is very innovative.'

Representing fundamental developments in computer and mechanical control, the robots are helping researchers understand bipedal motion and revealing processes that underlie human locomotion and motor learning. Applications are already on the horizon, with one researcher exploring how the new robotics can aid development of increasingly energy-efficient prosthetic devices.

'This is a perfect example of a single concept yielding benefits in a variety of fields, including medicine,' says NSF program officer Gil Devey, an NSF expert on disabilities research.

The MIT walker's passive-dynamic design provides a new way to study motor learning. The robot can teach itself to walk in as little as 10 minutes, adapting to terrain as it moves.

'This project is about the fundamentals of control,' says Foster. 'The researchers have combined our developing knowledge of computerized control with mechanical principles that the world provides for us and shown that we can integrate the two.'

All three robots verify a long-held hypothesis that suggests motors can substitute for gravity in passive-dynamic walking devices. A slope is not required, only careful engineering.

Reporters interested in attending the briefing should go to the Taft Room, Marriott Wardman Park Hotel, Washington, D.C. Please arrive no later than 9:45 am to obtain a badge for admittance. Be prepared to show a photo ID and press credentials.
Bookmark and Share
 
Home I Editor's Blog I News by Zone I News by Date I News by Category I Special Reports I Directory I Events I Advertise I Submit Your News I About Us I Guides
 
   © 2012 NewMaterials.com
Netgains Logo