Free Newsletter
Register for our Free Newsletters
Newsletter
Zones
Advanced Composites
LeftNav
Aerospace
LeftNav
Amorphous Metal Structures
LeftNav
Analysis and Simulation
LeftNav
Asbestos and Substitutes
LeftNav
Associations, Research Organisations and Universities
LeftNav
Automation Equipment
LeftNav
Automotive
LeftNav
Biomaterials
LeftNav
Building Materials
LeftNav
Bulk Handling and Storage
LeftNav
CFCs and Substitutes
LeftNav
Company
LeftNav
Components
LeftNav
Consultancy
LeftNav
View All
Other Carouselweb publications
Carousel Web
Defense File
New Materials
Pro Health Zone
Pro Manufacturing Zone
Pro Security Zone
Web Lec
Pro Engineering Zone
 
 
 
News

NPL unveils improved means of measuring ultrasonic cleaning systems

National Physical Laboratory (NPL) : 12 August, 2010  (New Product)
NPL has developed the CaviMeter - a new improved instrument for measuring the performance of ultrasonic cleaning systems.
Ultrasonic Cleaning Systems are widely used in healthcare applications and the medical device manufacturing industry. They work by passing a high frequency sound wave through a liquid detergent to create thousands of small bubbles. These then implode with such force that the impact removes contaminant particles from submerged materials.

The current NHS-recommended technique to measure the performance of ultrasonic cleaning systems uses aluminium foil, which is eroded and punctured by the imploding bubbles. This is an unreliable process to apply and can contaminate the vessel cleaning fluid, adding unnecessary costs.

The new NPL CaviMeter provides a quick and simple to use measurement solution for cleaning systems, and so is a new and improved method of quality assurance. It consists of a sensor connected by a thin flexible cable to a portable monitor and display unit. The sensor is shielded in a special rubber material designed to protect it, and provide it with spatial resolution of a few millimeters.

By monitoring the acoustic signals generated when the clouds of bubbles implode, the CaviMeter identifies how much cavitation is taking place at a given location, allowing equipment to be fine-tuned to produce the ideal quantity and distribution of cleaning action. This approach helps ensure that only the required energy is used, reducing costs and environmental impact.

Mark Hodnett, a Senior Research Scientist at NPL, said:

'Until now, there have been no quantitative methods for identifying how much cavitation takes place at different locations in a cleaning system, and therefore no way to ensure that the cleaning process is totally effective. NPL's CaviMeter and sensor can now provide this capability, for both users and manufacturers of cleaning systems. It is the first of its kind for acoustically mapping cavitation produced by ultrasonic cleaning systems used in healthcare.'

The CaviMeter supports the manufacture and development of ultrasonic baths, and also allows healthcare organisations to make informed and cost-effective purchasing decisions for cleaning systems. Once a system is chosen, the CaviMeter can be used regularly to test the efficacy of its cleaning performance, even when using different detergents and surfactants (wetting agents that lower the surface tension of a liquid).

The CaviMeter was designed in response to a longstanding user need. The novel spatially-sensitive cavitation sensor it uses was conceived and developed under Strategic Research at NPL, with the accompanying electronics supported by the Measurement for Innovators programme. It is a great example of how products delivering real impact to end-users can be developed through the National Measurement System (NMS).

A further 2.5 million is now being invested by the NMS and NPL into ultrasound, which includes carrying out research into microbubbles - whereby the bubbles themselves can be used as sensors.
Bookmark and Share
 
Home I Editor's Blog I News by Zone I News by Date I News by Category I Special Reports I Directory I Events I Advertise I Submit Your News I About Us I Guides
 
   © 2012 NewMaterials.com
Netgains Logo