Free Newsletter
Register for our Free Newsletters
Newsletter
Zones
Advanced Composites
LeftNav
Aerospace
LeftNav
Amorphous Metal Structures
LeftNav
Analysis and Simulation
LeftNav
Asbestos and Substitutes
LeftNav
Associations, Research Organisations and Universities
LeftNav
Automation Equipment
LeftNav
Automotive
LeftNav
Biomaterials
LeftNav
Building Materials
LeftNav
Bulk Handling and Storage
LeftNav
CFCs and Substitutes
LeftNav
Company
LeftNav
Components
LeftNav
Consultancy
LeftNav
View All
Other Carouselweb publications
Carousel Web
Defense File
New Materials
Pro Health Zone
Pro Manufacturing Zone
Pro Security Zone
Web Lec
Pro Engineering Zone
 
 
 
News

Oxygen sponge saves energy during the production of plastics

Netherlands Organization For Scientific Research : 11 February, 2005  (New Product)
Dutch researcher Bart de Graaf has developed a solid oxygen carrier, a sort of oxygen sponge. The oxygen from the sponge reacts with hydrogen to produce water. With De Graaf's discovery a lot of energy can be saved during the production of raw materials for plastics.
Hydrogen is released during the conversion of ethane and propane to ethylene and propylene, raw materials for the production of plastics. Using oxygen from a so-called oxygen sponge to convert hydrogen into water saves a lot of energy during the production process.

The oxygen sponge only reacts with the hydrogen released and not with other compounds in the chemical reaction, such as ethane and propane. This allows more starting materials to be converted in one cycle and makes the separation of the starting material and product both easier and cheaper. This new process therefore saves a lot of energy.

Shopping bags, Australian banknotes and many other materials contain the plastics polyethylene or polypropylene. These are made from the raw materials ethylene and propylene. Linking together these raw materials creates a large network of molecules, a plastic.

The majority of ethylene and propylene is made from ethane and propane, produced during the cracking of crude oil. Ethane and propane are converted into ethylene and propylene plus hydrogen in a reactor vessel at a very high temperature.

Unfortunately, this chemical reaction is an equilibrium reaction. This means that although ethylene and propylene are formed, the starting materials are not completely used up in the reaction. The product produced is therefore contaminated. It costs a lot of energy to separate the starting materials and products, and to return the starting materials left to the reactor.

Bart de Graaf developed a process which directly removes one of the products from the equilibrium reaction. Using an oxygen sponge to convert the hydrogen released into water allows the reaction to continue until most of the starting materials have been used up.

The research was funded by the Netherlands Organisation for Scientific Research.
Bookmark and Share
 
Home I Editor's Blog I News by Zone I News by Date I News by Category I Special Reports I Directory I Events I Advertise I Submit Your News I About Us I Guides
 
   © 2012 NewMaterials.com
Netgains Logo