Free Newsletter
Register for our Free Newsletters
Newsletter
Zones
Advanced Composites
LeftNav
Aerospace
LeftNav
Amorphous Metal Structures
LeftNav
Analysis and Simulation
LeftNav
Asbestos and Substitutes
LeftNav
Associations, Research Organisations and Universities
LeftNav
Automation Equipment
LeftNav
Automotive
LeftNav
Biomaterials
LeftNav
Building Materials
LeftNav
Bulk Handling and Storage
LeftNav
CFCs and Substitutes
LeftNav
Company
LeftNav
Components
LeftNav
Consultancy
LeftNav
View All
Other Carouselweb publications
Carousel Web
Defense File
New Materials
Pro Health Zone
Pro Manufacturing Zone
Pro Security Zone
Web Lec
Pro Engineering Zone
 
 
 
News

Researchers develop blood test to diagnose Alzheimer

Washington University In St Louis : 21 March, 2002  (Technical Article)
Researchers have for the first time used a blood test to identify Alzheimer
“We don’t know if this finding in mice will apply to humans,” says David M. Holtzman, M.D., the Charlotte and Paul Hagemann Associate Professor of Neurology and associate professor of molecular biology and pharmacology at the School of Medicine. “If it does, it has the potential to provide a non-invasive means of detecting Alzheimer’s pathology even before clinical symptoms appear.”

Holtzman led the Washington University research team and Steven M. Paul, M.D., group vice president at Lilly Research Laboratories, led the Lilly team. Washington University research fellow Ronald B. DeMattos, Ph.D., was first author; Lilly’s Kelly R. Bales, was a co-first author.

Recent studies have revealed physical changes that can begin in the brains of Alzheimer’s patients 10 to 20 years before symptoms arise. For reasons not entirely understood, potentially dangerous amounts of a protein called amyloid-b begin to build up in these individuals. If enough Ab clumps together in the brain, it forms amyloid plaques, a key feature of Alzheimer’s disease.

“Brain plaques are somewhat analogous to the plaques characteristic of arteriosclerosis,” explains Paul. “If you have a heart attack at age 65, the atherosclerotic process that caused that event probably started decades beforehand. Since we now know that Alzheimer’s pathology starts well before symptoms appear, we’re hoping it may be possible to develop a test that predicts the presence of amyloid plaques and, ultimately, the risk of dementia, similar to performing an angiogram to predict an impending heart attack.”

The team examined 49 mice with a mutation in the gene for amyloid precursor protein similar to the genetic abnormality found in some families with a strong history of Alzheimer’s disease. All the mice developed plaques within a year, though to varying degrees. The researchers took advantage of these differences to investigate potential factors that predict the extent of plaque formation.

First, they measured baseline levels of two types of Ab in the animals’ blood, Ab40 and Ab42. The mice then were injected with m266, an antibody that the team previously discovered draws Ab out of the brain and into the surrounding blood without harming the animals, and were periodically retested for blood Ab. After 24 hours, the researchers examined each animal’s brain tissue for plaques, focusing on two key regions involved in Alzheimer’s disease: the hippocampus and the cingulate cortex.

Before m266 injection, the amount of Ab in the animals’ blood did not correlate to the number of plaques in their brains. But within five minutes of m266 injection, Ab levels increased dramatically and did correlate with the amount of brain amyloid. This suggests that blood Ab levels do not reflect the progression of the disease unless the animal has been given m266.

According to DeMattos, blood Ab levels in humans also do not reflect the amount of amyloid plaques in the brain. “The truly novel finding of our experiment is that a simple injection of m266 altered the metabolism of Ab and unmasked important correlations with brain pathology. Hopefully, we also will be able to alter the metabolism of Ab in humans.”

The team used their data to develop potential models for estimating amyloid levels in the brain. Several factors, including overall levels of Ab after m266 injection and Ab40 levels 24 hours after injection, accurately revealed the extent of amyloid deposition in the brains of these mice. Using these factors, the team developed a rough diagnostic procedure to determine “high” or “low” plaque burden in the animals.

“This has obvious implications for developing a similar blood test for brain amyloid load in humans,” says Holtzman. “Though we will not be able to detect risk in someone who has not begun to accumulate amyloid, we hope to predict the disease well before symptoms appear. Such a test also could distinguish individuals suffering from dementia caused by Alzheimer’s from those with other types of dementia, and may help us evaluate an individual’s response to particular medical therapies.”
Bookmark and Share
 
Home I Editor's Blog I News by Zone I News by Date I News by Category I Special Reports I Directory I Events I Advertise I Submit Your News I About Us I Guides
 
   Â© 2012 NewMaterials.com
Netgains Logo