Free Newsletter
Register for our Free Newsletters
Newsletter
Zones
Advanced Composites
LeftNav
Aerospace
LeftNav
Amorphous Metal Structures
LeftNav
Analysis and Simulation
LeftNav
Asbestos and Substitutes
LeftNav
Associations, Research Organisations and Universities
LeftNav
Automation Equipment
LeftNav
Automotive
LeftNav
Biomaterials
LeftNav
Building Materials
LeftNav
Bulk Handling and Storage
LeftNav
CFCs and Substitutes
LeftNav
Company
LeftNav
Components
LeftNav
Consultancy
LeftNav
View All
Other Carouselweb publications
Carousel Web
Defense File
New Materials
Pro Health Zone
Pro Manufacturing Zone
Pro Security Zone
Web Lec
Pro Engineering Zone
 
 
 
News

Researchers establish a new law allowing unlimited optical resolution in fluorescence microscopy

Max Planck Society : 18 November, 2006  (Technical Article)
Max Planck researchers have succeeded in overcoming the law postulated by Ernst Abbe in 1873 for diffraction limited resolution in light microscopes. Stefan Hell and his co-workers have established a new law that promises unlimited resolution in fluorescence microscopy. Future applications range from the imaging of cell interiors to the measuring of lithographic structures in microchip manufacturing, and substantial improvements in the quantification of the reaction kinetics of organic molecules.
Ever since its invention in the 17th century, the light microscope has served as a key instrument to the advancement of knowledge. For biology, this statement is true even today, since focused light is the only way to examine living cells non-invasively. However, because of the wave nature of light, focused light is subject to diffraction. As early as 1873, Ernst Abbe recognized that this fact imposes an absolute limit on resolution in microscopy. Abbe, whose 100th year death anniversary was in February, captured this limit in a formula, which states that objects at distances that are smaller than a certain limit cannot be separated in a light microscope. This resolution limit can be largely ascribed to the fact that light cannot be focused to a smaller spot due to diffraction. It seemed impossible to image details smaller than a distance where delta d is equal to 200nm using conventional lenses and visible light.

For a long time, Abbe’s law was regarded as being insurmountable. For higher resolution, the textbook knowledge was that a complicated and costly electron or scanning tunneling microscope would be required. However, over the past few years, researchers from the Max Planck Institute for Biophysical Chemistry in Göttingen, Germany, have developed with Stimulated Emission Depletion microscopy, a physically consistent concept for breaking the diffraction limited resolution limit in fluorescence microscopy, and then verified it in experiments. Unlike in the light microscopes conceivable so far, in a STED microscope, the relevant focal fluorescence spot can, in principle, be reduced in size to the size of a molecule (2-5 nm). This is due to the fact that the spot size is no longer subject to Abbe’s formula, but to a new law that differs from Abbe’s original formula in a crucial factor, a square root term [1,2]:

In one of their latest publications [2], the Göttingen-based research team verifies this new law with their experiments. They show that even with conventional objectives and focused light, resolutions of 16 nm are feasible. Therefore for the first time ever, it has been demonstrated experimentally that even with focused-light optics, resolutions at the nano-level are possible in fluorescing samples. In an additional publication [3], the researchers show that STED microscopy allows one to image lithographic structures (which had been previously dyed with a fluorescent dye) of width as small as 40-80 nm, a size previously reserved for electron microscopy. This may be of importance for the lithographic manufacturing of microchips.

The reduction in size of the diameter of the effective fluorescence focus also has fundamental implications for methods that use fluorescence fluctuations to study the reaction kinetics of molecules in solutions. The smaller the focal volumes, the more effective and sensitive are these methods. Fluorescence fluctuation methods were also limited by diffraction as a result. Therefore, in a fourth study [4], the research team from Göttingen shows that using STED, measurement volumes notably below the resolution limit can be produced without confining the solution itself mechanically. This method may substantially improve the analysis of pharmaceutical active ingredients and protein interactions in cells in future.
Bookmark and Share
 
Home I Editor's Blog I News by Zone I News by Date I News by Category I Special Reports I Directory I Events I Advertise I Submit Your News I About Us I Guides
 
   Â© 2012 NewMaterials.com
Netgains Logo