Free Newsletter
Register for our Free Newsletters
Newsletter
Zones
Advanced Composites
LeftNav
Aerospace
LeftNav
Amorphous Metal Structures
LeftNav
Analysis and Simulation
LeftNav
Asbestos and Substitutes
LeftNav
Associations, Research Organisations and Universities
LeftNav
Automation Equipment
LeftNav
Automotive
LeftNav
Biomaterials
LeftNav
Building Materials
LeftNav
Bulk Handling and Storage
LeftNav
CFCs and Substitutes
LeftNav
Company
LeftNav
Components
LeftNav
Consultancy
LeftNav
View All
Other Carouselweb publications
Carousel Web
Defense File
New Materials
Pro Health Zone
Pro Manufacturing Zone
Pro Security Zone
Web Lec
Pro Engineering Zone
 
 
 
News

Researchers study light activated anticancer drug targeted to DNA using cisplatin like sub-units

Virginia Polytechnic Institute And State University : 03 September, 2006  (Technical Article)
One of the most effective chemotherapy drugs against cancer is cisplatin because it attaches to cancer DNA and disrupts repair. However, it also kills healthy tissue. Many scientists are creating alternative drugs or cisplatin analogs in attempts to find treatments without side effects. One approach to analog development is light activated drugs, or photodynamic therapy. Now a Virginia Tech chemistry-biology research team that has been working on both non-cisplatin drugs and cisplatin analogs has combined their findings to create a molecular complex (supramolecule) that exploits cisplatins tumor targeting to deliver a light activated drug.
One of the most effective chemotherapy drugs against cancer is cisplatin because it attaches to cancer DNA and disrupts repair. However, it also kills healthy tissue. Many scientists are creating alternative drugs or cisplatin analogs in attempts to find treatments without side effects. One approach to analog development is light activated drugs, or photodynamic therapy. Now a Virginia Tech chemistry-biology research team that has been working on both non-cisplatin drugs and cisplatin analogs has combined their findings to create a molecular complex (supramolecule) that exploits cisplatins tumor targeting to deliver a light activated drug.

Chemistry professor Karen J. Brewer reports that the group has developed supramolecular complexes that combine light-absorbing PDT agents and cisplatin like units. Previous anticancer molecules created by the group have contained platinum-based molecules that bind DNA. They have also developed new light activated systems able to photocleave DNA. This report combines these two approaches to target the drug to DNA using cisplatin like units, directing the light activation to tumor cells and the sub-cellular target, DNA.

'In the past, our light activated systems had to find the DNA within the cell, an often inefficient process. Now we have added the DNA targeting drug,' Brewer said. 'We were working on cisplatin analogs before, so we have tied it to light activated systems.'

Cisplatin begins its interaction with cancer DNA by binding to the nitrogen atoms of the DNA bases, typically guanine. Our new supramolecules use this nitrogen-binding site to hold the light activated drug at the target until signaled to activate. Thus the new supramolecules can be delivered to the tumor site but remain inert until activated by a light signal. Light waves in the therapeutic range that is, those that can penetrate tissue, are used to activate these new drugs. t The researchers are also appending other molecules that emit UV light to track the movement of these drugs within cells.

American Chemical Society Abstract:

Mixed-metal tetrametallic complexes [{(bpy)2M(dpp)}2M'(L)PtCl2](PF6)6 (M, M'= Os or Ru, L = dpp, dpq or dpb; bpy = 2,2'-bipyridine, dpp = 2,3-bis(2-pyridyl)pyrazine, dpq = 2,3-bis(2-pyridyl)quinoxaline, dpb = 2,3-bis(2-pyridyl)benzoquinoxaline) are of interest. These supramolecular complexes have a trimetallic {(bpy)2M(dpp)}2M'(L)6+ chromophore, which strongly absorbs visible light, possessing several metal-to-ligand charge transfer transitions throughout the visible region, coupled to a reactive Pt site. This unique design allows these complexes to display interesting properties. Photophysical studies reveal excited state energy or electron transfer is possible. This report will discuss how component identity dictates devices properties. This work is supported by the NSF (CHE-0408445).

DNA interaction and biological activity of Ru-Pt supramolecular complexes (INOR 125) authors are Miao, chemistry Ph.D. student R. Lee Williams , biology professor Brenda S. J. Winkel , and Brewer, all of Virginia Tech. This presentation will also be posted during the Sci-Mix from 8 to 10 p.m. Monday, March 27.

Probing DNA-metal complex interactions of Pt containing assemblies via electrochemistry and spectroscopy (INOR 122), authors are Mongelli , Winkel , and Brewer .

Variation of light absorbing units for rhodium centered trimetallic complexes as DNA photocleavage agents applicable in photodynamic therapy (INOR 606) authors are Emily Merola, chemistry undergraduate at Bucknell who worked in the summer at Virginia Tech, Shatara Mayfield, chemical engineering student at North Carolina A&T who worked at Virginia Tech for two summers), chemistry undergraduate Julie Heinecke, Winkel, and Brewer.
Bookmark and Share
 
Home I Editor's Blog I News by Zone I News by Date I News by Category I Special Reports I Directory I Events I Advertise I Submit Your News I About Us I Guides
 
   © 2012 NewMaterials.com
Netgains Logo