Free Newsletter
Register for our Free Newsletters
Newsletter
Zones
Advanced Composites
LeftNav
Aerospace
LeftNav
Amorphous Metal Structures
LeftNav
Analysis and Simulation
LeftNav
Asbestos and Substitutes
LeftNav
Associations, Research Organisations and Universities
LeftNav
Automation Equipment
LeftNav
Automotive
LeftNav
Biomaterials
LeftNav
Building Materials
LeftNav
Bulk Handling and Storage
LeftNav
CFCs and Substitutes
LeftNav
Company
LeftNav
Components
LeftNav
Consultancy
LeftNav
View All
Other Carouselweb publications
Carousel Web
Defense File
New Materials
Pro Health Zone
Pro Manufacturing Zone
Pro Security Zone
Web Lec
Pro Engineering Zone
 
 
 
News

Researchers use imaging technique to visualize effects of stress on human brain

National Science Foundation : 22 November, 2005  (Company News)
The holiday season is notorious for the emotional stress it evokes. Now, researchers at the University of Pennsylvania School of Medicine have come up with a non-invasive way to see the effects of psychological stress in an area of the brain linked to anxiety and depression. This research has important implications for how practitioners treat the numerous long-term health consequences of chronic stress.
The holiday season is notorious for the emotional stress it evokes. Now, researchers at the University of Pennsylvania School of Medicine have come up with a non-invasive way to see the effects of psychological stress in an area of the brain linked to anxiety and depression. This research has important implications for how practitioners treat the numerous long-term health consequences of chronic stress.

In the study, which is reported in the Nov.21 online edition of the Proceedings of the National Academy of Sciences, researchers used functional magnetic resonance imaging to detect an increase in blood flow to the prefrontal cortex in individuals subjected to stress. Further, the increase remained even when the stressor was removed, suggesting the effects of stress are more persistent than once thought.

Whereas most previous fMRI studies have relied on indirect measures of cerebral blood flow, the Penn team, led by John A. Detre, measured blood flow directly, using a technique called arterial spin labeling. The technique is non-invasive, relying on magnetically 'tagging' the water molecules in subjects' blood.

This research is supported by the National Science Foundation, the National Institutes of Health, and the U.S. Air Force.
Bookmark and Share
 
Home I Editor's Blog I News by Zone I News by Date I News by Category I Special Reports I Directory I Events I Advertise I Submit Your News I About Us I Guides
 
   © 2012 NewMaterials.com
Netgains Logo