Free Newsletter
Register for our Free Newsletters
Newsletter
Zones
Advanced Composites
LeftNav
Aerospace
LeftNav
Amorphous Metal Structures
LeftNav
Analysis and Simulation
LeftNav
Asbestos and Substitutes
LeftNav
Associations, Research Organisations and Universities
LeftNav
Automation Equipment
LeftNav
Automotive
LeftNav
Biomaterials
LeftNav
Building Materials
LeftNav
Bulk Handling and Storage
LeftNav
CFCs and Substitutes
LeftNav
Company
LeftNav
Components
LeftNav
Consultancy
LeftNav
View All
Other Carouselweb publications
Carousel Web
Defense File
New Materials
Pro Health Zone
Pro Manufacturing Zone
Pro Security Zone
Web Lec
Pro Engineering Zone
 
 
 
News

Researchers validate energy savings of P-Bits

Georgia Institute Of Technology : 04 February, 2005  (New Product)
For millions of users of computer devices requiring frequent recharging such as cell phones, PDAs, and MP3 players, new technology developed at Georgia Tech could mean they are no longer tethered to their chargers. Dr. Krishna Palem announces that he has confirmed his probabilistic bits discovery from last spring by producing a device based on this cutting-edge new approach to making computer chips significantly more energy efficient. The Defense Advanced Research Projects Agency, the central research arm of the U.S. Department of Defense, funded this research effort through DARPA's Power Aware Computing and Communications program.
For millions of users of computer devices requiring frequent recharging such as cell phones, PDAs, and MP3 players, new technology developed at Georgia Tech could mean they are no longer tethered to their chargers. Dr. Krishna Palem announces that he has confirmed his probabilistic bits discovery from last spring by producing a device based on this cutting-edge new approach to making computer chips significantly more energy efficient. The Defense Advanced Research Projects Agency, the central research arm of the U.S. Department of Defense, funded this research effort through DARPA's Power Aware Computing and Communications program.

The validation of probabilistic bits or PBITs is most significant in the area of reduced power consumption and increased processing speeds, resulting in making computer devices run faster and more energy efficient. A PBIT is like a conventional bit in that it takes on a 0 or a 1 value, except that one is certain of its value only with a probability of p. Current hardware, using conventional bits, expends large amounts of energy calculating with absolute certainty.

'Our PBITs model is now backed by measurements of an actual probabilistic CMOS device which we call PCMOS,' said Palem, a joint professor in the Georgia Tech College of Computing and the School of Electrical and Computer Engineering and director of the Center for Research in Embedded Systems & Technology. 'Our device takes advantage of noise at the quarter-micron (0.25 micron) level and uses probability to extract great energy savings. Noise and energy savings are becoming increasingly important as semiconductors approach the nanoscale.'

This ability to cope with noise is also increasingly relevant in the context of the impact of noise as devices scale to increasingly small sizes as projected by Moore's Law, the doubling of transistors every couple of years. Palem's approach opens up an entirely new way of overcoming this hurdle.

'Finding ways to reduce energy demands and cope with probabilistic variations in future VLSI designs, thus sustaining Moore's Law past the next decade, is an issue faced by the entire semiconductor industry and Krishna Palem is researching novel ways to address this problem,' said Shekhar Borkar, Intel Fellow and director of circuit research for Intel's Microprocessor Technology Lab. 'I believe that Dr. Palem's research holds great promise for the industry, and look forward to the acceleration of his work from research to development.'

'The most striking thing about the work to me is the idea that we can utilize a phenomena normally viewed as unwanted (noise on the chip) as a vehicle to address an important and limiting problem (reducing heat dissipation). There is something powerful and appealing about turning a problem into a feature!' says Ralph K. Cavin III, Ph.D., vice president for Research Operations at Semiconductor Research Corporation.

Using the physical measurements of PCMOS devices, the research team estimates that 100-fold improvements are possible to the energy consumed and performance of complex applications such as neural networks, which are used for pattern recognition and other applications such as spoken alphabet recognition programs used on cell phones. Palem announced these results at the DARPA-PACC meeting in Santa Fe, N.M on December 1-2.
Bookmark and Share
 
Home I Editor's Blog I News by Zone I News by Date I News by Category I Special Reports I Directory I Events I Advertise I Submit Your News I About Us I Guides
 
   © 2012 NewMaterials.com
Netgains Logo