Free Newsletter
Register for our Free Newsletters
Newsletter
Zones
Advanced Composites
LeftNav
Aerospace
LeftNav
Amorphous Metal Structures
LeftNav
Analysis and Simulation
LeftNav
Asbestos and Substitutes
LeftNav
Associations, Research Organisations and Universities
LeftNav
Automation Equipment
LeftNav
Automotive
LeftNav
Biomaterials
LeftNav
Building Materials
LeftNav
Bulk Handling and Storage
LeftNav
CFCs and Substitutes
LeftNav
Company
LeftNav
Components
LeftNav
Consultancy
LeftNav
View All
Other Carouselweb publications
Carousel Web
Defense File
New Materials
Pro Health Zone
Pro Manufacturing Zone
Pro Security Zone
Web Lec
Pro Engineering Zone
 
 
 
News

Scientists link algae salt tolerance to human kidney function

Weizmann Institute Of Science : 19 June, 2006  (Company News)
Life thrives in all sorts of hostile environments, including the extreme salinity of the Dead Sea. A team of scientists at the Weizmann Institute of Science has uncovered a strategy that helps a plant-like, microscopic alga to happily proliferate in such inhospitable surroundings, and their findings have unexpectedly shed light on the working of our own kidneys.
Over the years, a number of Weizmann Institute scientists have addressed the question of how molecules essential to life, such as proteins, have adapted to function in extreme environments. The proteins they investigated were isolated from halophilic (salt-loving) microorganisms from the Dead Sea. After determining the 3-D structures for several halophilic proteins, researchers were able to explain how these proteins not only cope with high salinities, but are actually 'addicted' to them.

However, the alga Dunaliella salina is an organism of a different streak: it is able to grow in any salinity, from the extremes of the Dead Sea to nearly fresh water. The uniquely salt-tolerant Dunaliella, which is commercially grown as a source of natural beta carotene, has been investigated at the Weizmann Institute for over 30 years. Yet, the secrets of its exceptionally successful adaptation to salt remained unresolved.

In a recent paper published in the Proceedings of the National Academy of Sciences, USA (PNAS), Institute scientists Prof. Ada Zamir and Dr. Lakshmanane Premkumar of the Institute's Biological Chemistry Department and Prof. Joel Sussman and Dr. Harry Greenblatt of the Structural Biology Department revealed the structural basis of a remarkably salt-tolerant Dunaliella enzyme, a carbonic anhydrase, which may hold the key. Comparisons with known carbon anhydrases from animal sources showed that the Dunaliella enzyme shares a basic plan with its distant relatives, but with a few obvious differences. The most striking of these is in the electrical charges on the proteins' surfaces: Charges on the salt-tolerant enzyme are uniformly negative (though not as intensely negative as those in halophilic proteins), while the surfaces of carbonic anhydrases that don't tolerate salt sport a negative/positive/ neutral mix. This and other unique structural features may enable the algal carbonic anhydrase to be active in the presence of salt, though not dependent on it.

In a surprise twist, the researchers discovered that one other known carbonic anhydrase, found in mouse kidney, sported a similar, salt-tolerant construction. Pondering why a structure conferring salt tolerance should evolve once in a Dead Sea organism and once in a mouse has led the researchers to some new insights into kidney physiology. The researchers hope that the knowledge gleaned from their study of a tiny alga might provide the basis for designing new drugs that could target enzymes based on their salt tolerance.
Bookmark and Share
 
Home I Editor's Blog I News by Zone I News by Date I News by Category I Special Reports I Directory I Events I Advertise I Submit Your News I About Us I Guides
 
   © 2012 NewMaterials.com
Netgains Logo