Free Newsletter
Register for our Free Newsletters
Newsletter
Zones
Advanced Composites
LeftNav
Aerospace
LeftNav
Amorphous Metal Structures
LeftNav
Analysis and Simulation
LeftNav
Asbestos and Substitutes
LeftNav
Associations, Research Organisations and Universities
LeftNav
Automation Equipment
LeftNav
Automotive
LeftNav
Biomaterials
LeftNav
Building Materials
LeftNav
Bulk Handling and Storage
LeftNav
CFCs and Substitutes
LeftNav
Company
LeftNav
Components
LeftNav
Consultancy
LeftNav
View All
Other Carouselweb publications
Carousel Web
Defense File
New Materials
Pro Health Zone
Pro Manufacturing Zone
Pro Security Zone
Web Lec
Pro Engineering Zone
 
 
 
News

Shrinking magnetic storage media down to the nanoscale

DOE/Brookhaven National Laboratory : 23 April, 2007  (Technical Article)
In the world of electronic and magnetic devices, the goal is to get smaller.
Zhu will present his work assessing the properties of materials that may lead to magneto-electronic devices on the scale of billionths of a meter at the American Physical Society meeting in Baltimore.

Zhu’s group has fabricated patterned magnetic films by depositing magnetic materials such as Permalloy and cobalt in patterns of dots, squares, or ellipses across a surface of nonmagnetic substrates such as carbon or silicon nitride. With each dot measuring about 100 nanometers, or billionths of a meter across, these materials could serve as building blocks for new nanoscale magneto-electronic devices and data storage media.

“For digital communication and data storage applications, such as magnetic recording media, you need two stable states to encode the ‘ones’ and ‘zeros’ of digital information,” Zhu explains. In his array of magnetic dots, the two states are the two distinct spin orientations, or polarities, of the dots’ internal magnetic fields.

Using a state-of-the-art, field-emission transmission electron microscope equipped with a custom-made objective lens, the only one like it in the world, Zhu’s group can probe the magnetic properties (including spin orientation) of each dot, and map how the spins “flip” in response to an external magnetic field, or other variables such as temperature, environment, and crystal defects. The technique uses an extremely coherent source of electrons to produce images with unprecedented quality at high resolution in which the amplitude and direction of local magnetization can be clearly visualized.

“What we are looking for is two very stable states with a well-defined switching mechanism,” Zhu says. Such a medium could be encoded with digital data by switching the spins from “up” to “down, or clockwise to counterclockwise, at will, without interference from other variables.

“In order to make these materials into useful, practical magnetic building blocks, we really have to understand this switching, or reversal, mechanism,” Zhu says.

The precise measurements allow the scientists to compare experimental observations with calculations to validate various theoretical models.

Once the researchers understand the mechanism, scientists may be able to scale the materials down even smaller, perhaps to the molecular scale.
Bookmark and Share
 
Home I Editor's Blog I News by Zone I News by Date I News by Category I Special Reports I Directory I Events I Advertise I Submit Your News I About Us I Guides
 
   Â© 2012 NewMaterials.com
Netgains Logo