Consisting of two molecular triangles, entwined about each other three times into a hexagram, the structure’s interlocked molecules are tiny – each triangle is 114 atoms in length around the perimeter. The molecular triangles are threaded around each other at the same time that the triangles are formed, by a process called "self-assembly", similar to how the DNA double helix is formed in biology.
The molecule was created at The University of Manchester by PhD student Alex Stephens. Professor David Leigh, in Manchester’s School of Chemistry, said: “It was a great day when Alex finally got it in the lab. In nature, biology already uses molecular chainmail to make the tough, light shells of certain viruses and now we are on the path towards being able to reproduce its remarkable properties.
The team’s next step will be to make larger, more elaborate, interlocked structures.
|