Free Newsletter
Register for our Free Newsletters
Newsletter
Zones
Advanced Composites
LeftNav
Aerospace
LeftNav
Amorphous Metal Structures
LeftNav
Analysis and Simulation
LeftNav
Asbestos and Substitutes
LeftNav
Associations, Research Organisations and Universities
LeftNav
Automation Equipment
LeftNav
Automotive
LeftNav
Biomaterials
LeftNav
Building Materials
LeftNav
Bulk Handling and Storage
LeftNav
CFCs and Substitutes
LeftNav
Company
LeftNav
Components
LeftNav
Consultancy
LeftNav
View All
Other Carouselweb publications
Carousel Web
Defense File
New Materials
Pro Health Zone
Pro Manufacturing Zone
Pro Security Zone
Web Lec
Pro Engineering Zone
 
 
 
News

Technique creates patterns in unique crystals formed from hydrogel nanoparticles

Georgia Institute Of Technology : 10 September, 2003  (New Product)
In related work, the Georgia Institute of Technology researchers have also learned to use weak attractive forces between the soft spheres to produce uniform crystalline structures with particle concentrations much lower than possible with hard spheres. The developments were described September 10th at the 226th national meeting of the American Chemical Society in New York.
The development could make possible the fabrication of waveguides, three-dimensional microlenses and other photonic structures from the unusual crystals.

In April 2002, a research team led by Andrew Lyon, a professor in Georgia Tech's School of Chemistry and Biochemistry, announced it had developed a family of hydrogel-based nanoparticles that could be used to create photonic crystals whose optical properties could be tuned by thermally adjusting the water content of the particles.

The soft, conformable spherical particles provided a unique system for producing self-assembled periodic structures that could be tuned to transmit specific wavelengths of light. Applications were expected in optical switching and optical limiting.

The work discussed at the ACS meeting moves the nanoparticles closer to practical application by providing a way to form complex patterns in the crystalline structures. The patterns could be useful as optical waveguides or lenses.

'This represents a fundamentally new method for patterning self-assembled photonic materials,' Lyon said. 'By combining a photo-patterning method with a self-assembly technique, we can rapidly make large volumes of very nice optical materials. This provides the best of both worlds, a good optical material that is easy to prepare, combined with a process that allows us to tell the material what kind of overall structure it should have.'

Lyon's group creates the pattern with a frequency-doubled Nd:YAG laser whose beam applies specific amounts of heat to the poly-N-isopropylacrylamide nanoparticles, which average 224 nanometer in diameter. To produce the smallest possible features, the researchers include tiny gold nanoparticles with the hydrogels; the gold converts the laser light to heat, allowing precise thermal control.

The heat prompts phase transitions, causing the particles to shrink or swell depending on the temperature. That changes the crystalline structure.

'The gold particles allow us to use a very narrowly-focused laser beam to locally heat the material,' Lyon said. 'We can have a very sharp temperature gradient between the center of the laser spot and the surroundings. Everything outside of the laser spot experiences mostly ambient conditions and stays crystallized. Everything inside the laser spot goes through a melting phase. Then, the effective cooling rate is very rapid as the laser moves away, trapping the material as an optically transparent, non-diffractive glassy material.'
Bookmark and Share
 
Home I Editor's Blog I News by Zone I News by Date I News by Category I Special Reports I Directory I Events I Advertise I Submit Your News I About Us I Guides
 
   © 2012 NewMaterials.com
Netgains Logo