Free Newsletter
Register for our Free Newsletters
Newsletter
Zones
Advanced Composites
LeftNav
Aerospace
LeftNav
Amorphous Metal Structures
LeftNav
Analysis and Simulation
LeftNav
Asbestos and Substitutes
LeftNav
Associations, Research Organisations and Universities
LeftNav
Automation Equipment
LeftNav
Automotive
LeftNav
Biomaterials
LeftNav
Building Materials
LeftNav
Bulk Handling and Storage
LeftNav
CFCs and Substitutes
LeftNav
Company
LeftNav
Components
LeftNav
Consultancy
LeftNav
View All
Other Carouselweb publications
Carousel Web
Defense File
New Materials
Pro Health Zone
Pro Manufacturing Zone
Pro Security Zone
Web Lec
Pro Engineering Zone
 
 
 
News

Tiny nanocables could figure in toxin detection

University Of California, Davis : 16 November, 2004  (New Product)
Tiny nanocables, 1000 times smaller than a human hair, could become key parts of toxin detectors, miniaturised solar cells and powerful computer chips. The work is published online in the Journal of the American Chemical Society.
A technique for making the nanocables has been invented by a team of UC Davis chemical engineers led by Pieter Stroeve, professor of chemical engineering and materials science. They manufacture the cables in the nano-sized pores of a template membrane. The insides of the pores are coated with gold. Layers of other semiconductors, such as tellurium, cadmium sulphide or zinc sulphide, are electrochemically deposited in the gold tube until a solid cable forms, then the membrane is dissolved, leaving finished cables behind.

Stroeve envisions many uses for these nanocables. For example, the cables' ability to conduct electricity changes when they are exposed to different chemicals or toxins. Earlier nano-devices could only detect whether a toxin was present, said Ruxandra Vidu, a postdoctoral scholar working with Stroeve. But nanocables will go further, measuring the quantity of toxins.

Stroeve's team can also construct arrays of nanocables. 'You put a copper tape on the tops of the nanocables before the template is dissolved,' Stroeve said. 'You're left with nanocables sticking up at right angles from the tape.'

These arrays have a very large surface area - 1000 times greater than on a flat device of the same size. They could be used to efficiently capture sunlight in a tiny solar cell.

Nanocables could also be used to make computer chips more powerful by packing transistors closer together. Computers now contain silicon chips with metal transistors affixed to the surface. 'With our new technique, we could embed transistors into the silicon chips to begin with,' Stroeve said.
Bookmark and Share
 
Home I Editor's Blog I News by Zone I News by Date I News by Category I Special Reports I Directory I Events I Advertise I Submit Your News I About Us I Guides
 
   © 2012 NewMaterials.com
Netgains Logo