Free Newsletter
Register for our Free Newsletters
Newsletter
Zones
Advanced Composites
LeftNav
Aerospace
LeftNav
Amorphous Metal Structures
LeftNav
Analysis and Simulation
LeftNav
Asbestos and Substitutes
LeftNav
Associations, Research Organisations and Universities
LeftNav
Automation Equipment
LeftNav
Automotive
LeftNav
Biomaterials
LeftNav
Building Materials
LeftNav
Bulk Handling and Storage
LeftNav
CFCs and Substitutes
LeftNav
Company
LeftNav
Components
LeftNav
Consultancy
LeftNav
View All
Other Carouselweb publications
Carousel Web
Defense File
New Materials
Pro Health Zone
Pro Manufacturing Zone
Pro Security Zone
Web Lec
Pro Engineering Zone
 
 
 
News

Tiny tools carve glass

Pennsylvania State University : 02 November, 2004  (New Product)
Tools so tiny that they are difficult to see, are solving the problems of carving patterns in glass, ceramics and other brittle materials.
Tools so tiny that they are difficult to see, are solving the problems of carving patterns in glass, ceramics and other brittle materials, according to a Penn State engineer.

'Even very brittle materials like glass will cut smoothly at a micron level,' says Dr. Eric R. Marsh, associate professor of mechanical engineering. 'The tools we are making are small enough so that the brittle materials behave like a malleable material like aluminium, producing smooth curly chips of glass or ceramic.'

Normally, brittle materials come apart in large uncontrolled chunks or they simply fracture completely. The researchers are trying to control the machining process so that well-defined, accurate, microscopic patterns can be created in brittle materials.

Demands for smaller channels in glass for micro fluids, dimples to create tiny chemical reservoirs and MEMs microelectromechanical systems, fuel the need to find quick, inexpensive ways to create these tiny devices.

Marsh; Chris J. Morgan, graduate student at University of Kentucky, and R. Ryan Vallance, assistant professor, George Washington University, begin with polycrystalline diamond on Carborundum -- a commercially available product -- to create miniature drills and end mills using microelectro discharge machining. EDM removes parts of the millimetre diamond surface by sputtering them off to fashion the tool. They use this non-contact method because the tools are tiny and fragile. The Carborundum base becomes the shaft of the drill or mill end.

The researchers describe how the tools are created and used in an online edition of the Journal of Micromechanics and Microengineering, available in hard copy from 10 December 2004. The engineers take advantage of the uneven surface created by diamond removal at the microscopic level and use the rough surface for cutting.

The tools spin exceptionally fast to remove material to create dimples or channels. The fast spinning, however, does not mean that the carving takes place rapidly. The tools are so small and so fragile that only very slight pressure, about as much as a paperclip exerts, sculpts the surface. It can take as long as an hour to produce one dimple a half millimeter in diameter.

Slow as that may be, the process would be faster than the current process which employs photolithography. Tiny tools can be designed and manufactured in less than a day and used to create the desired surface immediately. Photolithography requires many more steps and much longer lead-time.

While photolithography is typically only used on silicon chips or wafers, the tiny tools will work on glass, emeralds, sapphires, ceramics of all kinds and calcium fluorite. There are applications in optics, DNA analysis and biocomputers on a chip.

Tiny tools can also create shapes that photolithography cannot. In photolithography, surface shapes have to be built up by layer after layer of material creating a stair-step surface. Tiny tools grind and shape smooth surfaces although they cannot yet achieve the nano-size structures available with photolithography.

'This really is a way to get shapes that we cannot get any other way,' says Marsh.

Currently, the researchers are using existing machines designed for larger equipment to operate the tools, but they hope to develop a tabletop appliance. Equipment donations from Professional Instruments and Lion Precision in Minnesota and Panasonic supported this work. The National Science Foundation funded this research.
Bookmark and Share
 
Home I Editor's Blog I News by Zone I News by Date I News by Category I Special Reports I Directory I Events I Advertise I Submit Your News I About Us I Guides
 
   © 2012 NewMaterials.com
Netgains Logo