Free Newsletter
Register for our Free Newsletters
Newsletter
Zones
Advanced Composites
LeftNav
Aerospace
LeftNav
Amorphous Metal Structures
LeftNav
Analysis and Simulation
LeftNav
Asbestos and Substitutes
LeftNav
Associations, Research Organisations and Universities
LeftNav
Automation Equipment
LeftNav
Automotive
LeftNav
Biomaterials
LeftNav
Building Materials
LeftNav
Bulk Handling and Storage
LeftNav
CFCs and Substitutes
LeftNav
Company
LeftNav
Components
LeftNav
Consultancy
LeftNav
View All
Other Carouselweb publications
Carousel Web
Defense File
New Materials
Pro Health Zone
Pro Manufacturing Zone
Pro Security Zone
Web Lec
Pro Engineering Zone
 
 
 
News

U.S. Department of Agriculture report that Fe-TAML catalysts degrade estrogenic compounds

Carnegie Mellon Universtity : 02 August, 2006  (Technical Article)
Scientists from Carnegie Mellon University and the U.S. Department of Agriculture have found that a rapid, environmentally friendly catalytic process involving Fe-TAML activators and hydrogen peroxide breaks down two types of estrogenic compounds. These natural and synthetic compounds can mimic or block the activities of hormones in wildlife and humans, which may disrupt the normal functions of the endocrine system and impair development. They could also contaminate drinking water.
The results will be presented by Nancy Shappell, a research physiologist at the USDA's Agricultural Research Service in Fargo, N.D, on Thursday, June 29, at the 10th annual Green Chemistry and Engineering Conference in Washington, D.C. Shappell will present her paper, 'Degradation of Estradiol and Ethinylestradiol With an Fe-TAML Oxidant Activator and Hydrogen Peroxide,' during the Frontiers in Green Chemistry and Green Engineering section of the conference.

Fe-tetra-amido macrocyclic ligand activators, which are synthetic catalysts made with elements found in nature, originated at Carnegie Mellon's Institute for Green Oxidation Chemistry under the leadership of Terry Collins, the Thomas Lord Professor of Chemistry in the Mellon College of Science.

'Environmental studies on various wildlife species have shown evidence that endocrine disruptors interfere with reproductive, immune and neurological capabilities and cause developmental abnormalities,' Collins said. 'We need to quickly develop a suite of standardized assays that test for estrogen-like activity of introduced chemicals and their byproducts so that anyone developing a new chemical technology can assess whether or not their technology is associated with endocrine disruption.'

Waste from animal-rearing facilities across the United States constitutes a major concentrated source of estrogens. Millions of pigs housed in these facilities produce tons of waste products laden with estrogens that can enter environmental and drinking waters. In addition, synthetic versions of estrogen found in birth control pills can enter surface water as a result of incomplete wastewater treatment, according to Shappell. Some scientists have suggested that these environmental estrogens could interfere with estrogen-controlled systems in wildlife and humans, disrupting innate regulatory mechanisms and leading to developmental disorders, infertility and other reproductive complications.

'Our results show that Fe-TAML activators are capable of breaking down two types of estrogenic compounds found as contaminants in surface water,' Shappell said. 'These promising results also indicate the potential use of Fe-TAML activators to destroy estrogenic compounds in municipal and agricultural wastewaters.'

Shappell and colleagues found that the Fe-TAML activator, used with hydrogen peroxide, almost completely degraded estradiol and ethinylestradiol in the laboratory. In fact, ethinylestradiol, the synthetic estrogen found in most birth control pills, is resistant to most biological degradation processes, but Fe-TAML activators break down more than 95 percent of this chemical within five minutes.

'Our next step would be to advance testing to the field. Fe-TAML activators have been field-tested in the pulp and paper industry and textile industry with promising results,' said Colin Horwitz, research professor at Carnegie Mellon. ARS scientists Pat Hunt and Kyoung Ro from the Florence, S.C., Coastal Plains Plant, Soil and Water Research Center were instrumental in making the connection between Shappell and the Institute for Green Oxidation Chemistry, and will be involved in field-testing swine wastewater.

Past studies with Fe-TAML activators have shown their enormous potential to provide clean, safe alternatives to existing industrial practices and provide ways to remediate other pressing environmental problems that currently lack solutions. Specific applications of Fe-TAML activators have included cleaning wastewater from textile manufacturing, reducing fuel pollutants, treating pulp and paper processing byproducts, and decontaminating a benign simulant of anthrax, all of which have been published by the Collins group.
Bookmark and Share
 
Home I Editor's Blog I News by Zone I News by Date I News by Category I Special Reports I Directory I Events I Advertise I Submit Your News I About Us I Guides
 
   © 2012 NewMaterials.com
Netgains Logo